Skip to main content

Advertisement

Log in

Spatial variability of methane emissions from Swiss alpine fens

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Wetland ecosystems are a major natural source of the important greenhouse gas methane (CH4). Among these ecosystems, fens have been shown to release high quantities of CH4. Data on CH4 emissions from alpine fens are scarce and mainly limited to the United States and China. Therefore, static chambers were used to quantify CH4 emissions from 14 fens located in the Swiss Alps. The aims of this study were to determine the spatial variability of the emissions and to identify potential key factors which influence CH4 turnover. The fens were located at altitudes between 1,800 and 2,600 m a.s.l., the pore water varied from acidic to slightly acidic (pH 4.5–6.4) and the vegetation was dominated by plants of the genus Carex. In addition, the underlying bedrock was either siliceous or calcareous. Methane emissions ranged from 74 ± 43 to 711 ± 212 mg CH4 m−2 day−1. The type of bedrock, the plant biomass above the water table and the CH4 pore water concentrations at depths from 0 to 20 cm were the main factors influencing CH4 emissions. Detailed measurements in three selected fens suggested that more than 98 % of the total CH4 emissions are due to plant-mediated transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquat Bot 39:57–73

    Article  Google Scholar 

  • Bagshaw EA, Wadham JL, Mowlem M, Tranter M, Eveness J, Fountain AG, Telling J (2011) Determination of dissolved oxygen in the cryosphere: a comprehensive laboratory and field evaluation of fiber optic sensors. Environ Sci Technol 45:700–705

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contribution to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  • Bartlett KB, Crill PM, Sass RL, Harriss RC, Dise NB (1992) Methane emissions from tundra environments in the Yukon-Kuskokwin Delta, Alaska. J Geophys Res Atmos 97:16645–16660

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effect model using S4 classes. R package version 0.999375-39. http://CRAN.R-project.org/package0lme4. Accessed Dec 2012

  • Beer J, Blodau C (2007) Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochim. Cosmochim. Acta 71:2989–3002

    Article  CAS  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR, Chanton JP (1999) Controls on CH4 emissions from a northern peatland. Glob Biogeochem Cycles 13:81–91

    Article  CAS  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspective from local to global scales. Glob Chang Biol 19:1325–1346

    Article  PubMed  Google Scholar 

  • Bubier JL, Moore TR, Roulet NT (1993) Methane emissions from wetlands in the mid-boreal region of northern Ontario, Canada. Ecology 74:2240–2254

    Article  Google Scholar 

  • Bubier JL, Moore TR, Juggins S (1995a) Predicting methane emission from bryophyte distribution in Northern Canadian Peatlands. Ecology 76:677–693

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bellisario L, Comer NT (1995b) Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Mannitoba, Canada. Glob Biogeochem Cycles 9:455–470

    Article  CAS  Google Scholar 

  • Cao GM, Xu XL, Long RJ, Wang QL, Wang CT, Du YG, Zhao XQ (2008) Methane emissions by alpine plant communities in the Qinghai–Tibet plateau. Biol Lett 4:681–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman JB, Lewis B, Litus G (2003) Chemical and isotopic evaluation of water sources to the fens of the south park, Colorado. Environ Geol 43:533–545

    CAS  Google Scholar 

  • Chasar LS, Chanton JP, Glaser PH, Siegel DI (2000) Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial lake agassiz peatland complex. Ann Bot 86:655–663

    Article  CAS  Google Scholar 

  • Chen H, Wu N, Gao YH, Wang YF, Luo P, Tian JQ (2009) Spatial variations on methane emissions from zoige alpine wetlands of southwest China. Sci Total Environ 407:1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Chen HA, Wu N, Wang YF, Gao YH, Peng CH (2011) Methane fluxes from alpine wetlands of Zoige Plateau in relation to water regime and vegetation under two scales. Water Air Soil Pollut 217:173–183

    Article  CAS  Google Scholar 

  • Chimner RA, Cooper DJ (2003) Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Can J Bot 81:477–491

    Article  CAS  Google Scholar 

  • Christensen TR, Jonasson S, Callaghan TV, Havstrom M (1995) Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments. J Geophys Res Atmos 100:21035–21045

    Article  CAS  Google Scholar 

  • Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30:1414–1418

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denman KL, Brasseur A, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine DA, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings 1 between changes in the climate system and biogeochemistry. climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change

  • Ding WX, Cai ZC, Wang DX (2004) Preliminary budget of methane emissions from natural wetlands in China. Atmos Environ 38:751–759

    Article  CAS  Google Scholar 

  • Ding WX, Cai ZC, Tsuruta H (2005) Plant species effects on methane emissions from freshwater marshes. Atmos Environ 39:3199–3207

    Article  CAS  Google Scholar 

  • Dise NB, Gorham E, Verry ES (1993) Environmental factors controlling methane emissions from peatlands in northern Minnesota. J Geophys Res Atmos 98:10583–10594

    Article  Google Scholar 

  • Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326

    Article  CAS  Google Scholar 

  • Epp MA, Chanton JP (1993) Rhizospheric methane oxidation determined via the methyl fluoride inhibition technique. J Geophys Res 98:18422–18423

    Google Scholar 

  • Fechner EJ, Hemond HF (1992) Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland. Glob Biogeochem Cycles 6:33–44

    Article  CAS  Google Scholar 

  • Franchini AG, Zeyer J (2012) Freeze-coring method for characterization of microbial community structure and function in wetland soils at high spatial resolution. Appl Environ Microbiol 78:4501–4504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman C, Lock MA, Reynolds B (1992) Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of water table draw-down: potential feedback to climate change. Biogeochemistry 19:51–60

    CAS  Google Scholar 

  • Freeman C, Nevison GB, Kang H, Hughes S, Reynolds B, Hudson JA (2002) Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales Wetland. Soil Biol Biochem 34:61–67

    Article  CAS  Google Scholar 

  • Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51:91–112

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Green SM, Baird AJ (2013) The importance of episodic ebullition methane losses from three peatland microhabitats: a controlled-environment study. Eur J Soil Sci 64:27–36

    Article  CAS  Google Scholar 

  • Heyer J, Berger U, Kuzin IL, Yakovlev ON (2002) Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period. Tellus B 54:231–249

    Article  Google Scholar 

  • Hirota M, Tang YH, Hu QW, Hirata S, Kato T, Mo WH, Cao GM, Mariko S (2004) Methane emissions from different vegetation zones in a Qinghai-Tibetan plateau wetland. Soil Biol Biochem 36:737–748

    Article  CAS  Google Scholar 

  • Hornibrook ERC, Bowes HL, Culbert A, Gallego-Sala AV (2009) Methanotrophy potential versus methane supply by pore water diffusion in peatlands. Biogeosciences 6:1490–1504

    Article  Google Scholar 

  • Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Glob Chang Biol 7:919–932

    Article  Google Scholar 

  • Joabsson A, Christensen TR, Wallen B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388

    Article  PubMed  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • King JY, Reeburgh WS, Regli SK (1998) Methane emission and transport by arctic sedges in Alaska: results of a vegetation removal experiment. J Geophys Res Atmos 103:29083–29092

    Article  CAS  Google Scholar 

  • Kleikemper J, Pombo SA, Schroth MH, Sigler WV, Pesaro M, Zeyer J (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 71:149–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koch O, Tscherko D, Kandeler E (2007) Seasonal and diurnal net methane emissions from organic soils of the eastern alps, Austria: effects of soil temperature, water balance, and plant biomass. Arct Antarct Alp Res 39:438–448

    Article  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421

    Article  CAS  Google Scholar 

  • Lazzaro A, Abegg C, Zeyer J (2009) Bacterial community structure of glacier forefields on siliceous and calcareous bedrock. Eur J Soil Sci 60:860–870

    Article  CAS  Google Scholar 

  • Lerman A (1979) Geochemical processes: water and sediment environments. Wiley, New York

    Google Scholar 

  • Letts MG, Roulet NT, Comer NT, Skarupa MR, Verseghy DL (2000) Parametrization of peatland hydraulic properties for the Canadian land surface scheme. Atmos Ocean 38:141–160

    Article  Google Scholar 

  • Liebner S, Schwarzenbach SP, Zeyer J (2012) Methane emissions from an alpine fen in central Switzerland. Biogeochemistry 109:287–299

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepan-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Mast MA, Wickland KP, Striegl RG, Clow DW (1998) Winter fluxes of CO2 and CH4 from subalpine soils in rocky mountain national park, Colorado. Glob Biogeochem Cycles 12:607–620

    Article  CAS  Google Scholar 

  • Moore TR, Basiliko N (2006) Decomposition in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecological studies 188. Springer, Berlin, pp 125–144

    Chapter  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/. Accessed Dec 2012

  • Roura-Carol M, Freeman C (1999) Methane release from peat soils: effect of Sphagnum and Juncus. Soil Biol Biochem 31:323–325

    Article  CAS  Google Scholar 

  • Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Saarnio S, Morero M, Shurpali NJ, Tuittila ES, Makila M, Alm J (2007) Annual CO2 and CH4 fluxes of pristine boreal mires as a background for the lifecycle analyses of peat energy. Boreal Environ Res 12:101–113

    CAS  Google Scholar 

  • Sachs T, Giebels M, Boike J, Kutzbach L (2010) Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the lena river delta, Siberia. Glob Chang Biol 16:3096–3110

    Google Scholar 

  • Schimel JP (1995) Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28:183–200

    Article  CAS  Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB, Sebacher SM, Griche SS (1986) Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and subarctic boreal marsh. Tellus B 38:1–10

    Article  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9:1185–1192

    Article  Google Scholar 

  • Trudeau NC, Garneau M, Pelletier L (2013) Methane fluxes from a patterned fen of the northeastern part of the La grande river watershed, james bay, Canada. Biogeochemistry 113:409–422

    Article  CAS  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. Holocene 12:69–80

    Article  Google Scholar 

  • Valentine DW, Holland EA, Schimel DS (1994) Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res 99:1563–1571

    Article  CAS  Google Scholar 

  • van der Nat FJWA, Middelburg JJ (1998) Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat Bot 61:95–110

    Article  Google Scholar 

  • Visser EJW, Bögemann GM, van de Steeg HM, Pierik R, Blom CWPM (2000) Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation. New Phytol 148:93–103

    Article  Google Scholar 

  • von Fischer JC, Rhew RC, Ames GM, Fosdick BK, von Fischer PE (2010) Vegetation height and other controls of spatial variability in methane emissions from the arctic coastal tundra at barrow, Alaska. J Geophys Res Biogeosci 115:G00I03

    Google Scholar 

  • Waddington JM, Roulet NT (2000) Carbon balance of a boreal patterned peatland. Glob Change Biol 6:87–97

    Article  Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:22775–22785

    Article  CAS  Google Scholar 

  • Wagner D, Kobabe S, Pfeiffer EM, Hubberten HW (2003) Microbial controls on methane fluxes from a polygonal tundra of the lena delta, Siberia. Permafr Periglac 14:173–185

    Article  Google Scholar 

  • West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH, Babcock S, Lai RS, Schmidt SK (1999) Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry 45:243–264

    Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (1992) Interannual variation in tundra methane emission: a 4 years time series at fixed sites. Glob Biogeochem Cycles 6:139–159

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (2000) Methane oxidation, production, and emission at contrasting sites in a boreal bog. Geomicrobiol J 17:237–251

    Article  CAS  Google Scholar 

  • Whiting GJ, Chanton JP (1992) Plant-dependent CH4 emission in a subartic Canadian fen. Glob Biogeochem Cycles 6:225–231

    Article  CAS  Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795

    Article  CAS  Google Scholar 

  • Wickland KP, Striegl RG, Mast MA, Clow DW (2001) Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Glob Biogeochem Cycles 15:321–335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. Gauer, M. Vogt and É. Mészáros for their assistance in the laboratory and the field, as well as J. Schneller for botanical determinations. We are grateful to Kraftwerke Oberhasli AG (KWO) and Centralschweizerische Kraftwerke (CKW) for facilitating access to the field sites at Oberaar and Göschener Alp, respectively. Additionally, we acknowledge A. Lazzaro, R. Henneberger, B. Morris, and C. Hoffman for helpful comments on the manuscript. ETH Zurich supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Zeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franchini, A.G., Erny, I. & Zeyer, J. Spatial variability of methane emissions from Swiss alpine fens. Wetlands Ecol Manage 22, 383–397 (2014). https://doi.org/10.1007/s11273-014-9338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9338-6

Keywords

Navigation