Skip to main content

Advertisement

Log in

Multipotential Trace Metal Concentrations in Soil Associated with the Ecological and Human Health Risk near the Rooppur Nuclear Power Plant, Pabna, Bangladesh

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil samples were collected from ten sampling points surrounded the Rooppur Nuclear Power Plant to determine the metal concentration like As, Pb, Rb, Sr, Zr, Cu, and Zn. The metals concentrations in soil samples were determined by the Energy Dispersive X-ray Fluorescence (EDXRF) technique. The average metal concentrations in the study area were found in the following descending order: Zr (334.84 mg/kg) > Rb (179.35 mg/kg) > Pb (172.77 mg/kg) > Sr (138.86 mg/kg) > Zn (120.54 mg/kg) > Cu (16.96 mg/kg) > As (8.50 mg/kg) respectively. Moreover, the sampling sites were organized according to the total metal concentration as S7 > S3 > S4 > S5 > S11 > S2 > S9 > S1 > S10 > S8 > S12 > S6 respectively. This study showed that the average concentration of As, Sr, and Cu surpassed the suggested standard and average shale value (ASV) limits. In this study, the identification of the soil quality associated with the ecological and human health risk was evaluated using some important indices. The geoaccumulation index (Igeo) deliberated that most of the sites were not contaminated except for S3 and S7, which were classified as strong contamination and strong to extreme contamination. The enrichment factor (EF) revealed that three sampling points of S3, S4, and S7 were enriched with Pb, which was consistent with the contamination factor (CF) suggested that the study area was contaminated by only Pb and Zn. It might happen due to excess battery rechargeable vehicles in the study area. However, this study revealed that the pollution load index (PLI) for most of the sampling points was lower than 1 (PLI < 1) suggesting good soil quality in the study area. The finding of PLI was similar to the potential ecological risk assessment, which signified that the study area was not in a harmful situation as it did not surpass the limit of 100. Subsequently, the assessment of human health risk suggested that both adults and children would not be exposed to the non-carcinogenic and carcinogenic risks as these remained under the corresponded threshold limits (1 and 10−6 to 10−4 respectively). However, this study suggests an action plan for the continuation of further investigation for monitoring the soil quality change due to the nuclear power plant’s present ongoing construction work and future operation in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are available upon request on the corresponding author.

References

  • Adimalla, N., Chen, J., & Qian, H. (2020). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, 110406.

    CAS  Google Scholar 

  • Ahmed, A. S., Hossain, M. B., Babu, S. O. F., Rahman, M. M., & Sarker, M. S. I. (2021). Human health risk assessment of heavy metals in water from the subtropical river, Gomti, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 15, 100416.

    Google Scholar 

  • Ahmed, A. S., Hossain, M. B., Semme, S. A., Babu, S. M. O. F., Hossain, K., & Moniruzzaman, M. (2020). Accumulation of trace elements in selected fish and shellfish species from the largest natural carp fish breeding basin in Asia: A probabilistic human health risk implication. Environmental Science and Pollution Research, 27(30), 37852–37865.

    CAS  Google Scholar 

  • Ahmed, A. S., Rahman, M., Sultana, S., Babu, S. O. F., & Sarker, M. S. I. (2019). Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. Marine Pollution Bulletin, 145, 436–447.

    CAS  Google Scholar 

  • Ahmed, F., Fakhruddin, A. N. M., Imam, M. T., Khan, N., Khan, T. A., Rahman, M. M., & Abdullah, A. T. M. (2016). Spatial distribution and source identification of heavy metal pollution in roadside surface soil: A study of Dhaka Aricha highway. Bangladesh. Ecological Processes, 5(1), 1–16.

    Google Scholar 

  • Ahmed, G., Miah, M. A., Anawar, H. M., Chowdhury, D. A., & Ahmad, J. U. (2012). Influence of multi-industrial activities on trace metal contamination: An approach towards surface water body in the vicinity of Dhaka Export Processing Zone (DEPZ). Environmental Monitoring and Assessment, 184(7), 4181–4190.

    CAS  Google Scholar 

  • Akter, S., Fahad, S.M., Ashrafi, S.S., Abedin, M.J., Jolly, Y.N., Kabir, M.J., Rahman, M.S., Begum, B.A., Mamun, K.M., Ali, M.H. (2021). Elemental analysis of Basella alba, Spinacia oleracea, Abelmoschus esculentus (L.), Ipomoea aquatica, Colocasia esculenta, Amaranthus dubius, and Raphanus sativus vegetables using the PIXE technique in a saline region of Bangladesh, Rampal Area. Biological Trace Element Research (Biol Trace Elem Res). https://doi.org/10.1007/s12011-021-02866-0.

  • Ali, M. H., Mustafa, A. R. A., & El-Sheikh, A. A. (2016). Geochemistry and spatial distribution of selected heavy metals in surface soil of Sohag, Egypt: A multivariate statistical and GIS approach. Environmental Earth Sciences, 75(18), 1–17.

    CAS  Google Scholar 

  • Ali, T., Arnab, I. Z., Bhuiyan, S. I., Rahman, A., Hossain, I., & Shidujaman, M. (2013). Feasibility study of RNPP (Rooppur Nuclear Power Project) in Bangladesh. Energy and Power Engineering, 2013(5), 1526–1530. https://doi.org/10.4236/epe.2013.54B289

    Article  Google Scholar 

  • Bakke, T., Källqvist, T., Ruus, A., Breedveld, G. D., & Hylland, K. (2010). Development of sediment quality criteria in Norway. Journal of Soils and Sediments, 10(2), 172–178.

    Google Scholar 

  • BANGLAPEDIA (2021). National Encyclopedia of Bangladesh. Inswardi Upazila, Pabna District, Bangladesh. https://en.banglapedia.org/index.php/Ishwardi_Upazila (accessed on October 10, 2021).

  • Baul, T. K., Datta, D., & Alam, A. (2018). A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy, 114, 598–608.

    Google Scholar 

  • Casado-Martinez, M. C., Smith, B. D., Luoma, S. N., & Rainbow, P. S. (2010). Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates? Environmental Pollution, 158(10), 3071–3076.

    Google Scholar 

  • Charzyński, P., Plak, A., & Hanaka, A. (2017). Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environmental Science and Pollution Research, 24(5), 4801–4811.

    Google Scholar 

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing. China. Chemosphere, 60(4), 542–551.

    CAS  Google Scholar 

  • Chonokhuu, S., Batbold, C., Chuluunpurev, B., Battsengel, E., Dorjsuren, B., & Byambaa, B. (2019). Contamination and health risk assessment of heavy metals in the soil of major cities in mongolia. International Journal of Environmental Research and Public Health, 16(14), 2552.

    CAS  Google Scholar 

  • Choudhury, T. R., Acter, T., Uddin, N., Kamal, M., Chowdhury, A. M. S., & Rahman, M. S. (2021). Heavy metals contamination of river water and sediments in the mangrove forest ecosystems in Bangladesh: A consequence of oil spill incident. Environmental Nanotechnology, Monitoring & Management, 16(2021), 100484. https://doi.org/10.1016/j.enmm.2021.100484

    Article  Google Scholar 

  • CNEMC (1990). China National Environmental Monitoring Centre. The background values of Chinese soils. Environmental Science Press, pp. 329–483, Beijing, China.

  • Cordos, E., Roman, C., Ponta, M. I. C. H. A. E. L. A., Frentiu, T. I. B. E. R. I. U., & Rautiu, R. (2007). Evaluation of soil pollution with copper, lead, zinc and cadmium in the mining area Baia Mare. REVISTA DE CHIMIE-BUCHAREST-ORIGINAL EDITION, 58(5), 470.

    CAS  Google Scholar 

  • El-Alfy, M.A., Darwish, D.H., & El-Amier, Y.A. (2020). Land use Land cover of the Burullus Lake shoreline (Egypt) and health risk assessment of metal-contaminated sediments. Human and Ecological Risk Assessment: An International Journal, 1–23.

  • Fakhri, A. (2015). Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: Optimization using response surface methodology. Process Safety and Environmental Protection, 93, 1–8.

    CAS  Google Scholar 

  • Fazekašová, D., & Fazekaš, J. (2020). Soil quality and heavy metal pollution assessment of Iron ore mines in Nizna Slana (Slovakia). Sustainability, 12(6), 2549.

    Google Scholar 

  • Feng, H., Jiang, H., Gao, W., Weinstein, M. P., Zhang, Q., Zhang, W., & Tao, J. (2011). Metal contamination in sediments of the western Bohai Bay and adjacent estuaries. China. Journal of Environmental Management, 92(4), 1185–1197.

    CAS  Google Scholar 

  • Gary, J. F. (1990). Zinc toxicity. American Journal of Clinical Nutrition., 51(2), 225–227.

    Google Scholar 

  • Goudie, A. G. (2004). Encyclopedia of geomorphology (Vol. 2). Psychology Press.

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Research, 14(8), 975–1001.

    Google Scholar 

  • Halim, M. A., Majumder, R. K., Jahan, M. K., Hossain, S., Rasul, M. G., Zaman, M. N., & Islam, M. R. (2011). A baseline study of the geochemical variables in the agricultural soils of the proposed nuclear power plant area in Bangladesh. Journal of Nature Science and Sustainable Technology, 5(4), 209.

    Google Scholar 

  • Hołtra, A., & Zamorska-Wojdyła, D. (2020). The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environmental Science and Pollution Research, 27(14), 16086–16099.

    Google Scholar 

  • Hossain, M. S., Ahmed, M. K., Sarker, S., & Rahman, M. S. (2020). Seasonal variations of trace metals from water and sediment samples in the northern Bay of Bengal. Ecotoxicology and Environmental Safety, 193, 110347. https://doi.org/10.1016/j.ecoenv.2020.110347

    Article  CAS  Google Scholar 

  • Islam, A. R. M. T., Bodrud-Doza, M., Rahman, M. S., Amin, S. B., Chu, R., & Mamun, H. A. (2020a). Sources of trace elements identification in drinking water of Rangpur district, Bangladesh and their potential health risk following multivariate techniques and Monte-Carlo simulation. Groundwater for Sustainable Development, 9, 100275. https://doi.org/10.1016/j.gsd.2019.100275

    Article  Google Scholar 

  • Islam, A. R. M. T., Islam, H. M. T., Mia, M. U., Khan, R., Habib, M. A., Bodrud-Dozad, M., Siddiquee, M. A., & Chu, R. (2020b). Co-distribution, possible origins, status and potential health risk of trace elements in surface water sources from six major river basins. Bangladesh. Chemosphere, 249, 126180. https://doi.org/10.1016/j.chemosphere.2020.126180

    Article  CAS  Google Scholar 

  • Jan, F. A., Ishaq, M., Ihsanullah, I., & Asim, S. M. (2010). Multivariate statistical analysis of heavy metals pollution in industrial area and its comparison with relatively less polluted area: A case study from the City of Peshawar and district Dir Lower. Journal of Hazardous Materials, 176(1–3), 609–616.

    CAS  Google Scholar 

  • Jefferson, R. (2001). Alkaline materials: Sodium, potassium, cesium, rubidium, francium, and lithium. Patty's Toxicology, 935–948.

  • Jin, Y., O’Connor, D., Ok, Y. S., Tsang, D. C., Liu, A., & Hou, D. (2019). Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environment International, 124, 320–328.

    CAS  Google Scholar 

  • Kacholi, D.S., & Sahu, M. (2018). Levels and health risk assessment of heavy metals in soil, water, and vegetables of Dar es Salaam, Tanzania. Journal of Chemistry, 2018.

  • Karim, R., Karim, M.E., Muhammad-Sukki, F., Abu-Bakar, S.H., Bani, N.A., Munir, A.B., Kabir, A.I., Ardila-Rey, J.A., Mas’ud, A.A. (2018). Nuclear energy development in Bangladesh: A study of opportunities and challenges. Energies, 11:1672; doi:https://doi.org/10.3390/en11071672

  • Karimi, A., Naghizadeh, A., Biglari, H., Peirovi, R., Ghasemi, A., & Zarei, A. (2020). Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environmental Science and Pollution Research, 1–11.

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82–90.

    Google Scholar 

  • Ke-Lin, H. U., Zhang, F. R., Hong, L., Huang, F., & Bao-Guo, L. I. (2006). Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing. Pedosphere, 16(6), 690–698.

    Google Scholar 

  • Khandare, A.L., Validandi, V., Rajendran, A., Singh, T. G., Thingnganing, L., Kurella, S., & Maddela, Y. (2020). Health risk assessment of heavy metals and strontium in groundwater used for drinking and cooking in 58 villages of Prakasam district, Andhra Pradesh, India. Environmental Geochemistry and Health, 1–27.

  • Kijowska-Strugała, M., Wiejaczka, Ł, Kozłowski, R., & Lekach, J. (2020). Metals content in sediments of ephemeral streams with small reservoirs (the Negev Desert). International Journal of Sediment Research, 35(3), 269–277.

    Google Scholar 

  • Kuerban, M., Maihemuti, B., Waili, Y., & Tuerhong, T. (2020). Ecological risk assessment and source identification of heavy metal pollution in vegetable bases of Urumqi, China, using the positive matrix factorization (PMF) method. PloS one, 15(4), e0230191.

    CAS  Google Scholar 

  • Kwok, K. W., Batley, G. E., Wenning, R. J., Zhu, L., Vangheluwe, M., & Lee, S. (2014). Sediment quality guidelines: Challenges and opportunities for improving sediment management. Environmental Science and Pollution Research, 21(1), 17–27.

    Google Scholar 

  • Landner, L. (1998). Arsenic in the aquatic environment-speciation and biological effects.

  • Langley, S., Gault, A. G., Ibrahim, A., Takahashi, Y., Renaud, R., Fortin, D., et al. (2009). Sorption of strontium onto bacteriogenic iron oxides. Environmental Science and Technology, 43(4), 1008–1014.

    CAS  Google Scholar 

  • Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment, 4(5), 1019–1039.

    Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.

    CAS  Google Scholar 

  • Marcus, R. L., Turner, S., & Cherry, N. M. (1996). A study of lung function and chest radiographs in men exposed to zirconium compounds. Occupational Medicine, 46(2), 109–113.

    CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an Europea Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872.

    Google Scholar 

  • Monsur, H. (1995). An introduction to the Quaternary geology of Bangladesh. Rehana Akhter.

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1–3), 205–219.

    CAS  Google Scholar 

  • Nour, H. E., & El-Sorogy, A. (2020). Heavy metals contamination in seawater, sediments and seashells of the Gulf of Suez. Egypt. Environmental Earth Sciences, 79, 274. https://doi.org/10.1007/s12665-020-08999-0

    Article  CAS  Google Scholar 

  • Nour, H.E. and Nouh, E. 2020. Comprehensive pollution monitoring of the Egyptian Red Sea Coast by using the environmental indicators. Environmental Science and Pollution Research, 27(23): https://doi.org/10.1007/s11356-020-09079-3

  • Nour, H. E., Ramadan, F., Aita, S., & Zahran, H. (2021). Assessment of sediment quality of the Qalubiya drain and adjoining soils, Eastern Nile Delta. Egypt. Arabian Journal of Geosciences., 14, 535. https://doi.org/10.1007/s12517-021-06891-0

    Article  CAS  Google Scholar 

  • Ogundele, D. T., Adio, A. A., & Oludele, O. E. (2015). Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. Journal of Environmental & Analytical Toxicology, 5(6), 1.

    Google Scholar 

  • Osmani, M., Bani, A., & Hoxha, B. (2015). Heavy metals and Ni phytoextractionin in the metallurgical area soils in Elbasan. Albanian Journal of Agricultural Sciences, 14(4), 414.

    CAS  Google Scholar 

  • Özkul, C. (2016). Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environmental Monitoring and Assessment, 188(5), 284.

    Google Scholar 

  • Phil-Eze, P. O. (2010). Variability of soil properties related to vegetation cover in a tropical rainforest landscape. Journal of Geography and Regional Planning, 3(7), 177–184.

    Google Scholar 

  • Rahman, M. S., Ahmed, A. S. S., Rahman, M. M., Babu, S. M. O. F., Sultana, S., Sarker, S. I., Awual, R., Rahman, M. M., & Rahman, M. (2021). Temporal assessment of heavy metal concentration and surface water quality representing the public health evaluation from the Meghna River estuary Bangladesh. Applied Water Science., 11, 121. https://doi.org/10.1007/s13201-021-01455-9

    Article  CAS  Google Scholar 

  • Rahman, M. S., Hossain, M. B., Babu, S. O. F., Rahman, M., Ahmed, A. S., Jolly, Y. N., & Akter, S. (2019a). Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Marine Pollution Bulletin, 141, 137–146.

    CAS  Google Scholar 

  • Rahman, M.S., Jolly, Y.N., Akter, S., Kamal, N.A., Rahman, R., Choudhury, T.R., & Begum, B.A. (2021). Sources of toxic elements in indoor dust sample at export processing zone (EPZ) area: Dhaka, Bangladesh; and their impact on human health. Environmental Science and Pollution Research.

  • Rahman, M. S., Khan, M. D. H., Jolly, Y. N., Kabir, J., Akter, S., & Salam, A. (2019b). Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Science of the Total Environment, 660, 1610–1622.

    Google Scholar 

  • Rahman, M. S., Molla, A. H., Saha, N., & Al-Reza, S. M. (2014a). Assessment of anthropogenic influence on heavy metals contamination in the aquatic ecosystem components: Water, sediment, and fish. Soil and Sediment Contamination: An International Journal, 23(4), 353–373.

    CAS  Google Scholar 

  • Rahman, M. S., Saha, N., & Molla, A. H. (2014b). Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone Bangladesh. Environ Earth Sci 71(5), 2293–2308.

    CAS  Google Scholar 

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88.

    CAS  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43(7), 795–805.

    CAS  Google Scholar 

  • Saha, N., & Rahman, M. S. (2020). Groundwater hydrogeochemistry and probabilistic health risk assessment through exposure to arsenic-contaminated groundwater of Meghna floodplain, central-east Bangladesh. Ecotoxicology and Environmental Safety, 206(2020), 111349.

    CAS  Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., & Zhou, J. L. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environmental Management., 185, 70–78.

    CAS  Google Scholar 

  • Saha, N., Rahman, M. S., Jolly, Y. N., Rahman, A., Sattar, M. A., & Hai, M. A. (2016). Spatial distribution and contamination assessment of six heavy metals in soils and their transfer into mature tobacco plants in Kushtia district. Bangladesh. Environmental Science and Pollution Research, 23(4), 3414–3426.

    CAS  Google Scholar 

  • Shahid, M., Ferrand, E., Schreck, E., & Dumat, C. (2013). Behavior and impact of zirconium in the soil–plant system: Plant uptake and phytotoxicity. Reviews of Environmental Contamination and Toxicology, 221, 107–127.

    CAS  Google Scholar 

  • Shen, G.F., Yuan, S.Y., Xie, Y.N., Xia, S.J., Li, L., Yao, Y.K., & Wu, H.S. (2014). Ambient levels and temporal variations of PM2. 5 and PM10 at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China. Journal of Environmental Science and Health, Part A, 49(2):171–178.

  • MAB Siddique ARMT Islam MS Hossain R Khan MA Akbor S Hasanuzzaman M.W.M., Mia, M.Y., Mallick, J., Rahman, M.S., Rahman, M.M., Bodrud-Doza, M. 2021 Multivariate statistics and entropy theory for irrigation water quality and entropy-weighted index development in a subtropical urban river Environmental Science and Pollution Research 10.1007/s11356-021-16343-7

  • Solgi, E., Esmaili-Sari, A., Riyahi-Bakhtiari, A., & Hadipour, M. (2012). Soil contamination of metals in the three industrial estates, Arak. Iran. Bulletin of Environmental Contamination and Toxicology, 88(4), 634–638.

    CAS  Google Scholar 

  • Tasrina, R. C., Rowshon, A., Mustafizur, A. M. R., Rafiqul, I., & Ali, M. P. (2015). Heavy metals contamination in vegetables and its growing soil. J Environ Anal Chem, 2(142), 2.

    Google Scholar 

  • Thomilson, D.C., Wilson, D.J., Harris, C.R., Jeffrey, D.W. (1980). Problem in heavy metals in estuaries and the formation of pollution index” Helgol Wiss Meeresunlter. 33(1–4): 566–575.

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    CAS  Google Scholar 

  • Uddin, M. G., Moniruzzaman, M., Quader, M. A., & Hasan, M. A. (2018). Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh. Groundwater for Sustainable Development, 7, 220–231.

    Google Scholar 

  • USEPA 1986 Superfund Public Health Evaluation Manual; US Environmental Protection Agency: Washington DC

  • USEPA 1993 Reference dose (RfD): Description and use in health risk assessments; US Environmental Protection Agency: Washington DC

  • USEPA 2000 Risk-based concentration table United States Environmental Protection Agency

  • USEPA, (2002). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites OSWER 9355.4–24; United States Environmental Protection Agency: Washington, DC, USA.

  • USEPA, (2010). Risk-based concentration table. Available online at. http://www.epa.gov/reg3hwmd/risk/human/index.

  • USEPA, (2011). Exposure factors handbook 2011 edition (Final). http://cfpub.epa.gov/

  • USEPA, (2019). Regional Screening Level (RSL) Summary Table (TR= 1E− 6, HQ= 1).

  • USFDA, (1993). Drug administration, Guidance document for nickel in shell fish. DHHS/PHS/FDA/CFSAN/office of seafood, Washington, DC.

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107.

    CAS  Google Scholar 

  • Yakovlev, E. Y., Zykova, E. N., Zykov, S. B., Malkov, A. V., & Bazhenov, A. V. (2020). Heavy metals and radionuclides distribution and environmental risk assessment in soils of the Severodvinsk industrial district, NW Russia. Environmental Earth Sciences, 79, 1–16.

    Google Scholar 

  • Yan, X., Zhang, F., Zeng, C., Zhang, M., Devkota, L. P., & Yao, T. (2012). Relationship between heavy metal concentrations in soils and grasses of roadside farmland in Nepal. International Journal of Environmental Research and Public Health, 9(9), 3209–3226.

    CAS  Google Scholar 

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355(1–3), 176–186.

    Google Scholar 

  • Zhang, M., Li, X., Yang, R., Wang, J., Ai, Y., Gao, Y., & Yu, H. (2019). Multipotential toxic metals accumulated in urban soil and street dust from Xining City, NW China: Spatial occurrences, sources, and health risks. Archives of Environmental Contamination and Toxicology, 76(2), 308–330.

    CAS  Google Scholar 

  • Zhao, X. M., Yao, L. A., Ma, Q. L., Zhou, G. J., Wang, L., Fang, Q. L., & Xu, Z. C. (2018). Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident. Chemosphere, 194, 107–116.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are deeply thankful to the laboratory of Bangladesh Atomic Energy Commission, 4 Kazi Nazrul Islam Avenue, Dhaka, and Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, for providing all necessary research facilities.

Author information

Authors and Affiliations

Authors

Contributions

MSR: conceptualization, methodology, software, validation, formal analysis, data curation, writing—review and editing, and supervision. MMAM: writing—original draft, software, validation, and formal analysis. MRZ: supervision and conceptualization. HT: project administration, resources, and supervision. YNJ, SA, and MJK: investigation and sample analysis using XRF. SMAS: supervision and visualization.

Corresponding author

Correspondence to M. Safiur Rahman.

Ethics declarations

Animal Research

There is no any aspect of the work covered in this manuscript that has involved animal.

Consent to Participate

Not applicable as well as this manuscript is not linked to case studies.

Consent for Publication

The authors have given the consents for the publication of identifiable details, which can include details within the text (“Material”) to be published in the Environmental Geochemistry and Health Journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Mollah, M.M.A., Zaman, M.Ru. et al. Multipotential Trace Metal Concentrations in Soil Associated with the Ecological and Human Health Risk near the Rooppur Nuclear Power Plant, Pabna, Bangladesh. Water Air Soil Pollut 232, 474 (2021). https://doi.org/10.1007/s11270-021-05418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05418-3

Keywords

Navigation