Skip to main content
Log in

A Mechanistic Model for Secchi Disk Depth, Driven by Light Scattering Constituents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

An optics theory-based mechanistic model for Secchi disk depth (Z SD) is advanced, tested, and applied for Cayuga Lake, NY. Robust data sets supported the initiative, including for (1) Z SD, (2) multiple light attenuation metrics, most importantly the beam attenuation (c) and particulate scattering (b p) coefficients, and (3) measures of constituents responsible for contributions to b p by phytoplankton (b o) and minerogenic particles (b m). The model features two serially connected links. The first link supports predictions of b p from those for b o and b m. The second link provides predictions of Z SD based on those for b p, utilizing an earlier optical theory radiative transfer equation. Recent advancements in mechanistically strong estimates of b m, empirical estimates of b o, and more widely available bulk measurements of c and b p have enabled a transformation from a theory-based conceptual to this implementable Z SD model for lacustrine waters. The successfully tested model was applied to quantify the contributions of phytoplankton biomass, and minerogenic particle groups, such as terrigenous clay minerals and autochthonously produced calcite, to recent b p and Z SD levels and dynamics. Moreover, it has utility for integration as a submodel into larger water quality models to upgrade their predictive capabilities for Z SD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arar, E. J. & Collins, G. B. (1997). EPA Method 445.o: In vitro determination of chlorophyll a and pheophytin a in a marine and freshwater algae by fluorescence. National Exposure Research Laboratory, USEPA, Cincinnati, OH.

  • Arhonditsis, G. B., & Brett, M. T. (2004). Evaluation of the current state of mechanistic aquatic biogeochemical modeling. Marine Ecology Progress Series, 271, 13–26.

    Article  Google Scholar 

  • Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., & Stramski, D. (2003). Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography, 48, 843–859.

    Article  Google Scholar 

  • Behrenfeld, M. J., & Boss, E. (2006). Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass. Journal of Marine Research, 64, 431–451.

    Article  CAS  Google Scholar 

  • Boss, E., Slade, W., & Hill, P. (2009a). Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass. Optics Express, 17(11), 9408–9420.

    Article  CAS  Google Scholar 

  • Boss, E., Slade, W. H., Behrenfeld, M., & Dall’Olmo, G. (2009b). Acceptance angle effects on the beam attenuation in the ocean. Optics Express, 17(3), 1535–1550.

    Article  Google Scholar 

  • Bowers, D. G., Braithwaite, K. M., Nimmo-Smith, W. A. M., & Graham, G. W. (2011). The optical efficiency of flocs in shelf seas and estuaries. Estuarine, Coastal and Shelf Science, 91(3), 341–350.

    Article  Google Scholar 

  • Bricaud, A., Morel, A., & Prieur, L. (1983). Optical efficiency factors of some phytoplankters. Limnology and Oceanography, 28, 816–832.

    Article  Google Scholar 

  • Cetinic’, I., Perry, M. J., Briggs, N. T., Kallin, E., D’Asaro, E. A., & Lee, C. M. (2012). Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment. Journal of Geophysical Research: Oceans, 117(C06028), 1–18.

    Google Scholar 

  • Chapra, S. C. (1997). Surface water-quality modeling. New York: McGraw-Hill. p. 844

  • Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation.

  • Cooke, G. D., Welch, E. B., Peterson, S. A. & Nichols, S. A. (2005). Restoration and management of lakes and reservoirs Boca Raton, FL: Taylor and Francis, CRC Press.

  • Davies-Colley, R. J., & Vant, W. N. (1988). Estimation of optical properties of water from Secchi disk depths. Journal of the American Water Resources Association, 24(6), 1329–1335.

    Article  Google Scholar 

  • Davies-Colley, R. J., Vant, W. N. & Smith, D. G. (2003). Colour and clarity of natural waters: science and management of optical water quality. Caldwell, New Jersey: Blackburn Press. p. 310

  • Effler, S. W. (1985). Attenuation versus transparency. Journal of Environmental Engineering, 111, 448–459.

    Article  CAS  Google Scholar 

  • Effler, S. W., Auer, M. T., & Johnson, N. A. (1989). Modeling Cl concentration in Cayuga Lake, USA. Water, Air and Soil Pollution, 44, 347–362.

    Article  CAS  Google Scholar 

  • Effler, S. W., Gelda, R. K., Perkins, M. G., Peng, F., Hairston, N. G. & Kearns, C. M. (2008). Patterns and modeling of the long-term optics record of Onondaga Lake, New York. Fundamental and Applied Limnology, 172/3(August), 217–237.

  • Effler, S. W., & Peng, F. (2014). Long-term study of minerogenic particle optics in Cayuga Lake, New York. Limnology and Oceanography, 59(2), 325–339.

    Article  CAS  Google Scholar 

  • Effler, S. W., Prestigiacomo, A. R., Matthews, D. A., Gelda, R. K., Peng, F., Cowen, E. A., & Schweitzer, S. A. (2010). Tripton, trophic state metrics, and near-shore versus pelagic zone responses to external loads in Cayuga Lake, New York. Fundamental and Applied Limnology, 178(1), 1–15.

    Article  CAS  Google Scholar 

  • Effler, S. W., Prestigiacomo, A. R., Peng, F., Gelda, R. K., & Matthews, D. A. (2014). Partitioning the contributions of minerogenic particles and bioseston to particulate phosphorus and turbidity. Inland Waters, 2(2), 179–192.

    Article  Google Scholar 

  • Fennel, K., & Boss, E. (2003). Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnology and Oceanography, 48, 1521–1534.

    Article  Google Scholar 

  • Field, S. D., & Effler, S. W. (1983). Light attenuation in Onondaga Lake, NY, USA, 1978. Archiv für Hydrobiologie, 98(4), 409–421.

    Google Scholar 

  • Gelda, R. K., Effler, S. W., Prestigiacomo, A. R., Peng, F., & Watkins, J. M. (2016). Simulations of minerogenic particle populations in time and space in Cayuga Lake, New York, in response to runoff events. Water Air Soil Pollution, 227(10), 1–20.

    Article  Google Scholar 

  • Gelda, R. K., King, A. T., Effler, S. W., Schweitzer, S. A., & Cowen, E. A. (2015). Testing and application of a two-dimensional hydrothermal/transport model for a long, deep and narrow lake with moderate Rossby number. Inland Waters, 5(4), 387–402.

    Article  Google Scholar 

  • Huot, Y., Morel, A., Twardowski, M. S., Stramski, D., & Reynolds, R. A. (2008). Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean. Biogeosciences, 5(2), 495–507.

    Article  CAS  Google Scholar 

  • Jassby, A. D., Goldman, C. R., Reuter, J. E., & Richards, R. C. (1999). Origins and scale dependence of temporal variability in the transparency of Lake Tahoe, California-Nevada. Limnology and Oceanography, 44(2), 282–294.

    Article  Google Scholar 

  • Jewson, D. H. (1977). Light penetration in relation to phytoplankton content of the euphotic zone of Lough Neagh. N. Ireland. Oikos, 28, 74–83.

    Article  CAS  Google Scholar 

  • Jonasz, M. (1987). Nonsphericity of suspended marine particles and its influence on light scattering. Limnology and Oceanography, 32(5), 1059–1065.

    Article  Google Scholar 

  • Kirk, J. T. O. (1985). Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems. Hydrobiologia, 125, 195–209.

    Article  Google Scholar 

  • Kirk, J. T. O. (2011). Light and photosynthesis in aquatic ecosystems, 3rd Ed. New York, NY: Cambridge University Press. p. 662

  • Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., Lin, J., & Lin, G. (2015). Secchi disk depth: a new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169, 139–149.

    Article  Google Scholar 

  • Levin, I. M., & Radomyslskaya, T. M. (2012). Estimate of water inherent optical properties from Secchi depth. Izvestiya, Atmospheric and Oceanic Physics, 48(2), 214–221.

    Article  Google Scholar 

  • Loisel, H., & Morel, A. (1998). Light scattering and chlorophyll concentration in case 1 waters: a reexamination. Limnology and Oceanography, 43(5), 847–858.

    Article  CAS  Google Scholar 

  • Megard, R. O., Settles, J. C., Boyer, H. A., & Combs, W. S. (1980). Light, Secchi disk, and trophic state. Limnology and Oceanography, 25, 373–377.

    Article  CAS  Google Scholar 

  • Mobley, C. D. (1994). Light and water: radiative transfer in natural waters San Diego: Academic Press.

  • NOAA (National Oceanic and Atmospheric Administration) (2013). Regional climate trends and scenarios for the U.S. national climate assessment. Part 1. Climate of the Northeast U.S. NOAA Technical Report NESDIS 141–1, U.S. Department of Commerce, Washington, DC.

  • Parsons, T. R., Maita, Y. & Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis New York, NY: Pergamon Press.

  • Peng, F., & Effler, S. W. (2007). Suspended minerogenic particles in a reservoir: light scattering features from individual particle analysis. Limnology and Oceanography, 52(1), 204–216.

    Article  CAS  Google Scholar 

  • Peng, F., & Effler, S. W. (2010). Characterizations of individual suspended mineral particles in western Lake Erie: implications for light scattering and water clarity. Journal of Great Lakes Research, 36(4), 686–698.

    Article  CAS  Google Scholar 

  • Peng, F., & Effler, S. W. (2011). Characterizations of the light-scattering attributes of mineral particles in Lake Ontario and the effects of whiting. Journal of Great Lakes Research, 37(4), 672–682.

    Article  CAS  Google Scholar 

  • Peng, F., & Effler, S. W. (2015). Quantifications and water quality implications of minerogenic particles in Cayuga Lake and its tributaries. Inland Waters, 5(4), 403–420.

    Article  Google Scholar 

  • Peng, F., & Effler, S. W. (2016a). Advancing two-component partitioning of light scattering in Cayuga Lake, New York. Limnology and Oceanography, 61, 298–315.

    Article  CAS  Google Scholar 

  • Peng, F. & Effler, S. W. (2016b). Characterization of calcite particles and evaluations of their optical effects in lacustrine systems. Limnology and Oceanography, in review.

  • Peng, F., Effler, S. W., Pierson, D., & Smith, D. G. (2009). Light-scattering features of turbidity-causing particles in interconnected reservoir basins and an intervening stream. Water Research, 43(8), 2280–2292.

    Article  CAS  Google Scholar 

  • Preisendorfer, R. W. (1986). Secchi disc science: visual optics of natural waters. Limnology and Oceanography, 31, 909–926.

    Article  CAS  Google Scholar 

  • Prestigiacomo, A. R., Effler, S. W., Matthews, D. A., Auer, M. T., Downer, B. E., Kuczynski, A., & Walter, M. T. (2016). Apportionment of bioavailable phosphorus loads entering Cayuga Lake, New York. Journal of the American Water Resources Association, 52(1), 31–47.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press. p. 535

  • Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater. 22nd,

  • Robson, B. J. (2014). State of the art in modelling of phosphorus in aquatic systems: review, criticisms and commentary. Environmental Modelling & Software, 61, 287–296.

    Article  Google Scholar 

  • Schaffner, W. R., & Oglesby, R. T. (1978). Phosphorus loadings to lake and some of their responses. Part 1. A new calculation of phosphorus loadings and its applications to 13 New York lakes. Limnology and Oceanography, 23, 120–134.

    Article  CAS  Google Scholar 

  • Smith, D. G., & Davies-Colley, R. J. (1992). Perception of water clarity and colour in terms of suitability for recreational use. Journal of Environmental Management, 36, 225–235.

    Article  Google Scholar 

  • Smith, D. G. (2001). A protocol for standardizing Secchi disk measurements, including use of a viewer box. Lake and Reservoir Management, 17(2), 90–96.

    Article  Google Scholar 

  • Stavn, R. H., & Richter, S. J. (2008). Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters. Applied Optics, 47(14), 2660–2679.

    Article  Google Scholar 

  • Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., & Claustre, H. (2008). Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic oceans. Biogeosciences, 5, 171–201.

    Article  CAS  Google Scholar 

  • Tilzer, M. M. (1983). The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnology and Oceanography, 28, 833–846.

    Article  CAS  Google Scholar 

  • Tyler, J. E. (1968). The Secchi disc. Limnology and Oceanography, 13, 1–6.

    Article  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: lake and reservoir ecosystems. 3rd Ed. New York: Academic Press. p. 1006

  • Zaneveld, J. R., & Pegau, W. S. (2003). Robust underwater visibility parameter. Optics Express, 11(23), 2997–3009.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for portions of this study was provided, in part, by Cornell University, a grant on aquatic optics from NASA (award NNX14AB80G), and the Upstate Freshwater Institute (UFI). The program of sampling and field and laboratory measurements was conducted by UFI. This is contribution number 337 of the Upstate Freshwater Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Effler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Effler, S.W., Strait, C., O’Donnell, D.M. et al. A Mechanistic Model for Secchi Disk Depth, Driven by Light Scattering Constituents. Water Air Soil Pollut 228, 153 (2017). https://doi.org/10.1007/s11270-017-3323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3323-7

Keywords

Navigation