Skip to main content

Advertisement

Log in

Effects of Chronic Exposure to Silver Nanoparticles on Ruditapes decussatus Gills Using Biochemical Markers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nanoparticles are among the particular materials produced by industrial activities; the release of these nanoparticles in natural ecosystems interacts with living organisms. Aquatic environment is the most common estuary waste medium for industrial and all human activities, the consequences may be highly effective on sea food species. Moreover, the potential in situ reduction of metallic ions by preexistent agents leads to nanoparticles which may cause hazardous effects. Many organisms become at risk especially those that use gills during respiration process such as bivalves. The study undertaken investigates the potential effect of silver nanoparticles obtained by green synthesis method on the gills of Ruditapes decussatus as a model. Nanoparticles have been synthesized using Ceratonia siliqua fruit extract as a reducing agent. The organisms have been chronically exposed to silver nanoparticles and the effects were biochemically evaluated. The tests performed show a typical behavior of catalase, glutathione reductase, and glutathione S-transferase activities that give information about the oxidative stress-induced malondialdehyde quantification, which reveals a possible membranous deterioration of the gills. Acetylcholinesterase expression has been qualified to be at a safe rate which implies the capacity of the animal to protect the cholinergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barhoumi, B., LeMenach, K., Dévier, M. H., El Megdiche, Y., Hammami, B., Ben Ameur, W., Ben Hassine, S., Cachot, J., Budzinski, H., & Driss, M. R. (2014). Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environmental Science & Pollution Research, 21(10), 6290.

    Article  CAS  Google Scholar 

  • Bebianno, M. J., & Serafim, M. A. (2003). Variation of metal and metallothioneinconcentrations in a natural population of Ruditapes decussatus. Archives of Environmental Contamination and Toxicology, 44, 53–56.

    Article  CAS  Google Scholar 

  • Bebianno, M. J., Geret, F., Hoarau, P., Serafim, M. A., Coelho, M. R., Gnassia-Barelli, M., et al. (2004). Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers, 9, 305–330.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Clairborne, A. (1985). Catalase activity. In R. A. Greenwald (Ed.), CRC handbook of methods in oxygen radical research (pp. 283–284). Boca Raton: CRC Press.

    Google Scholar 

  • Cribb, A. E., Leeder, J. S., & Spielberg, S. P. (1989). Use of a microplate reader in an assay of glutathione reductase using 5,5-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 183, 195–196.

    Article  CAS  Google Scholar 

  • Delay, M., & Frimmel, F. H. (2012). Nanoparticles in aquatic systems. Analytical and Bioanalytical Chemistry, 402(2), 583–592. doi:10.1007/s00216-011-5443-z.

    Article  CAS  Google Scholar 

  • Ensibi, C., Pérez-López, M., Rodríguez, F. S., Míguez-Santiyán, M. P., Daly Yahya, M. N., & Hernández-Moreno, D. (2013). Effects of deltamethrin on biometric parameters and liverbiomarkers in common carp (Cyprinus carpio L.). Environmental Toxicology and Pharmacology, 36, 384–391.

    Article  CAS  Google Scholar 

  • Farkasa, J., Christian, P., Gallego-Urrea, J. A., Roose, N., Hassellöv, M., Tollefsen, K. E., & Thomas, K. V. (2011). Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology, 101(1), 117–125.

    Article  Google Scholar 

  • Figueira, E., Cardoso, P., & Freitas, R. (2012). Ruditapes decussatus and Ruditapes philippinarum exposed to cadmium: toxicological effects and bioaccumulation patterns. Comparative Biochemistry and Physiology, Part C, 156, 80–86.

    CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139.

    CAS  Google Scholar 

  • Hayes, J. D., & McLellan, L. I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defense against oxidative stress. Free Radical Research, 31, 273–300.

    Article  CAS  Google Scholar 

  • Hidouri, S. (2017). Possible domestication of uranium oxides using biological assistance reduction. Saudi Journal of Biological Sciences, 24, 1–10.

    Article  CAS  Google Scholar 

  • Hidouri, S., Baccar, Z. M., Abdelmelek, H., Noguer, T., Marty, J. L., & Campàs, M. (2011). Structural and functional characterisation of a biohybrid material based on acetylcholinesterase and layered double hydroxides. Talanta, 85(4), 1882–1887. doi:10.1016/j.talanta.2011.07.026.

    Article  CAS  Google Scholar 

  • Lionetto, M.G., Caricato, R., Calisi, A., Giordano, M.E., Schettino, T. (2013). Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. BioMed Research International. Article ID 321213. doi.org/10.1155/2013/321213

  • Lykkesfeldt, J. (2007). Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica Chimica Acta, 380, 50–58. doi:10.1016/j.cca.2007.01.028.

    Article  CAS  Google Scholar 

  • Martin, H. L., & Teismann, P. (2009). Glutathione, a review on its role and significance in Parkinson’s disease. The FASEB Journal, 23(10), 3263–3272. doi:10.1096/fj.08-125443.

    Article  CAS  Google Scholar 

  • Mohseniazar, M., Barin, M., Zarredar, H., Alizadeh, S., & Shanehband, D. (2011). Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts., 1(3), 149–152.

    CAS  Google Scholar 

  • Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environmental International, 32, 967–976. doi:10.1016/j.envint.2006.06.014.

    Article  CAS  Google Scholar 

  • Pei, D., Ding, J., Duan, Z., Li, M., Feng, Y., & Li, C. (2012). Cloning and expression of a tomato glutathione S-transferase (GST) in Escherichia coli. African Journal of Biotechnology, 11(23), 6402–6408. doi:10.5897/AJB12.143.

    CAS  Google Scholar 

  • Qiao, M., Kisgati, M., Cholewa, J. M., Zhu, W., Smart, E. J., Sulistio, M. S., & Asmis, R. (2007). Increased expression of glutathione reductase in macrophages decreases atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice. Arteriosclerosi Thrombosis and Vascular Biology, 27, 1375–1382. doi:10.1161/ATVBAHA.107.142109.

    Article  CAS  Google Scholar 

  • Recknagel, R. O., Glende, E. A., Walker, R. L., & Lowery, K. (1982). Lipid peroxidation biochemistry measurement and significance in liver cell injury. In G. L. Plaa & W. R. Hewitt (Eds.), Toxicology of the liver (pp. 218–232). New York: Raven Press.

    Google Scholar 

  • Rosenberry, T. L. (1975). Acetylcholinesterase advances in enzymology and related areas of molecular. Journal of Biology, 43, 103–218.

    CAS  Google Scholar 

  • Šinko, G., Vrček, I. V., Goessler, W., Leitinger, G., Dijanošić, A., & Miljanić, S. (2014). Alteration of cholinesterase activity as possible mechanism of silver nanoparticle toxicity. Environmental Sciences and Pollution Research, 21, 1391–1400. doi:10.1007/s11356-013-2016-z.

    Article  Google Scholar 

  • Trevisan, R., Delapedra, G., Mello, D. F., Arl, M., Schmidt, É. C., Meder, F., Monopoli, M., et al. (2014). Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquatic Toxicology, 153, 27–38.

    Article  CAS  Google Scholar 

  • Waggiallah, H., & Alzohairy, M. (2011). The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics. Journal of Medical Sciences, 3(7), 344–347. doi:10.4297/najms.2011.3344.

    Google Scholar 

  • Zhao, Y., Dou, J., Wu, T., & Aisa, H. A. (2013). Investigating the antioxidant and acetylcholinesterase inhibition activities of gossypium herbaceam. Molecules, 18, 951–962. doi:10.3390/molecules18010951.

    Article  CAS  Google Scholar 

  • Zohra, B. S., & Habib, A. (2016). Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environmental Science and Pollution Research International, 23, 13954. doi:10.1007/s11356-016-6534-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Hidouri is truthfully grateful to the Department of Biology, Faculty of Science of Bizerte Carthage University for availing the required facilities throughout the experimental period of this work. The authors would like to thank anonymous reviewers and the editing board for the efforts given throughout the publication process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slah Hidouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidouri, S., Ensibi, C., Landoulsi, A. et al. Effects of Chronic Exposure to Silver Nanoparticles on Ruditapes decussatus Gills Using Biochemical Markers. Water Air Soil Pollut 228, 79 (2017). https://doi.org/10.1007/s11270-017-3265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3265-0

Keywords

Navigation