Skip to main content

Advertisement

Log in

Factors Affecting the Growth of Microalgae on Blackwater from Biosolid Dewatering

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper discusses the possibility of including the culturing of microalgae within a conventional wastewater treatment sequence by growing them on the blackwater (BW) from biosolid dewatering to produce biomass to feed the anaerobic digester. Two photobioreactors were used: a 12 L plexiglas column for indoor, lab-scale tests and a 85 L plexiglas column for outdoor culturing. Microalgae (Chlorella sp. and Scenedesmus sp.) could easily grow on the tested blackwater. The average specific growth rate in indoor and outdoor batch tests was satisfactory, ranging between 0.14 and 0.16 day−1. During a continuous test performed under outdoor conditions from May to November, in which the off-gas from the combined heat and power unit was used as the CO2 source, an average biomass production of 50 mgTSS L−1 day−1 was obtained. However, statistical analyses confirmed that microalgal growth was affected by environmental conditions (temperature and season) and that it was negatively correlated with the occurrence of nitrification. Finally, the biochemical methane potential of the algal biomass was slightly higher than that from waste sludge (208 mLCH4 gVS−1 vs. 190 mLCH4 gVS−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acién, F. G., Fernández, J. M., Magán, J. J., & Molina, E. (2012). Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344–1353. doi:10.1016/j.biotechadv.2012.02.005.

    Article  Google Scholar 

  • Anthonisen, A. C., Srinath, E. G., Loehr, R. C., & Prakasam, T. B. S. (1976). Inhibition of nitrification and nitrous acid compounds. Water Environment Federation, 48(5), 835–852. doi:10.2307/25038971.

    CAS  Google Scholar 

  • APHA. (2005). Standard Methods for the Examination of Water and Wastewater (21st ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Perales, J. A. (2014) Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Research, 49, 465–474.

  • Arcila, J. S., & Buitrón, G. (2016). Microalgae-bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. Journal of Chemical Technology and Biotechnology, 91, 2862–2870. doi:10.1002/jctb.4901.

    Article  CAS  Google Scholar 

  • Bahr, M., Díaz, I., Dominguez, A., González Sánchez, A., & Muñoz, R. (2014). Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environmental Science and Technology, 48(1), 573–581. doi:10.1021/es403596m.

    Article  CAS  Google Scholar 

  • Bchir, F. S., Gannoun, H., Herry, S. E., & Hamdi, M. (2011). Optimization of Spongiochloris sp. biomass production in the abattoir digestate. Bioresource Technology, 102(4), 3869–3876. doi:10.1016/j.biortech.2010.11.036.

    Article  CAS  Google Scholar 

  • Bizzotto, E. C., Villa, S., & Vighi, M. (2009). POP bioaccumulation in macroinvertebrates of alpine freshwater systems. Environmental Pollution, 157(12), 3192–3198. doi:10.1016/j.envpol.2009.06.001.

    Article  CAS  Google Scholar 

  • Blier, R., Lalibert, G., & De Notie, J. (1995). Tertiary treatment of cheese factory anaerobic effluent with Phormidium bohneri and Micractinum pusillum. Bioresource Technology, 52, 151–155.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A., & Moheimani, N. R. (2013). In M. A. Borowitzka & N. R. Moheimani (Eds.), Algae for Biofuels and Energy. Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-5479-9.

    Chapter  Google Scholar 

  • Chen, R., Li, R., Deitz, L., Liu, Y., Stevenson, R. J., & Liao, W. (2012). Freshwater algal cultivation with animal waste for nutrient removal and biomass production. Biomass and Bioenergy, 39, 128–138. doi:10.1016/j.biombioe.2011.12.045.

    Article  CAS  Google Scholar 

  • Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097–3105. doi:10.1016/j.biortech.2009.12.026.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. doi:10.1016/j.biotechadv.2007.02.001.

    Article  CAS  Google Scholar 

  • Cho, S., Lee, N., Park, S., Yu, J., Luong, T. T., Oh, Y.-K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520. doi:10.1016/j.biortech.2012.12.176.

    Article  CAS  Google Scholar 

  • Craggs, R., Sutherland, D., & Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24(3), 329–337. doi:10.1007/s10811-012-9810-8.

    Article  CAS  Google Scholar 

  • De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611–1627. doi:10.1016/j.biortech.2009.09.043.

    Article  CAS  Google Scholar 

  • El Hamouri, B. (2012) Rethinking natural, extensive systems for tertiary treatment purposes: The high-rate algae pond as an example. Desalination and Water Treatment, 4(1–3), 128–134.

  • Fernández, I., Acién, F. G., Berenguel, M., & Guzmán, J. L. (2014). First principles model of a tubular photobioreactor for microalgal production. Industrial and Engineering Chemistry Research, 53, 11121–11136. doi:10.1021/ie501438r.

    Article  Google Scholar 

  • Ficara, E., Uslenghi, A., Basilico, D., & Mezzanotte, V. (2014). Growth of microalgal biomass on supernatant from biosolid dewatering. Water Science and Technology, 69, 896–902. doi:10.2166/wst.2013.805.

    Article  CAS  Google Scholar 

  • Fouilland, E., Vasseur, C., Leboulanger, C., Le Floc’h, E., Carré, C., Marty, B., et al. (2014). Coupling algal biomass production and anaerobic digestion: production assessment of some native temperate and tropical microalgae. Biomass and Bioenergy, 70, 564–569. doi:10.1016/j.biombioe.2014.08.027.

    Article  CAS  Google Scholar 

  • Franchino, M., Comino, E., Bona, F., & Riggio, V. a. (2013). Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere, 92(6), 738–744. doi:10.1016/j.chemosphere.2013.04.023.

    Article  CAS  Google Scholar 

  • Ge, S., & Champagne, P. (2016). Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Research, 88, 604–612. doi:10.1016/j.watres.2015.10.054.

    Article  CAS  Google Scholar 

  • Ge, S., Champagne, P., Plaxton, W. C., Leite, G. B., & Marazzi, F. (2016). Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production. Biofuels, Bioproducts and Biorefining. doi:10.1002/bbb.

    Google Scholar 

  • Gonzales, L. E. , Canizares  R. O. , Baena S. (1997). Efficiency of ammonia and phosphprus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphusBioresource technology, 60, 259–262.

  • González, C., Marciniak, J., Villaverde, S., García-Encina, P. A., & Muñoz, R. (2008). Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Applied Microbiology and Biotechnology, 80(5), 891–898. doi:10.1007/s00253-008-1571-6.

    Article  Google Scholar 

  • González-Fernández, C., Molinuevo-Salces, B., & García-González, M. C. (2011). Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry. Bioresource Technology, 102(2), 960–966. doi:10.1016/j.biortech.2010.09.052.

    Article  Google Scholar 

  • Green, F. B., Lundquist, J. T., & Oswald, W. J. (1995). Energetics of advanced integrated wastewater pond systems. Water Science and Technology, 31(12), 9–20.

    Article  CAS  Google Scholar 

  • Harrel, F., & Dupont, C. (2015). Hmisc: Harrell Miscellaneous. R package version 3.17-1. http://CRAN.R-project.org/package=Hmisc

  • Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629–936. doi:10.1007/s00253-008-1681-1.

    Article  CAS  Google Scholar 

  • Lourie, E., Patil, V., & Gjengedal, E. (2010). Efficient purification of heavy-metal-contaminated water by microalgae-activated pine bark. Water, Air, and Soil Pollution, 210(1–4), 493–500. doi:10.1007/s11270-009-0275-6.

    Article  CAS  Google Scholar 

  • Makulla, A. (2000). Fatty acid composition of Scenedesmus obliquus: correlation to dilution rates. Limnologica - Ecology and Management of Inland Waters, 30, 162–168. doi:10.1016/S0075-9511(00)80011-0.

    Article  CAS  Google Scholar 

  • Marcilhac, C., Sialve, B., Pourcher, A. M., Ziebal, C., Bernet, N., & Béline, F. (2014). Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 64, 278–287. doi:10.1016/j.watres.2014.07.012.

    Article  CAS  Google Scholar 

  • Marcilhac, C., Sialve, B., Pourcher, A.-M., Ziebal, C., Bernet, N., & Béline, F. (2015). Control of nitrogen behaviour by phosphate concentration during microalgal-bacterial cultivation using digestate. Bioresource Technology, 175, 224–230. doi:10.1016/j.biortech.2014.10.022.

    Article  CAS  Google Scholar 

  • Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., & Carrère, H. (2015). New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, 2600–2621. doi:10.1039/C5EE01633A.

  • Mooij, P. R., Stouten, G. R., Tamis, J., van Loosdrecht, M. C. M., & Kleerebezem, R. (2013). Survival of the fattest. Energy & Environmental Science, 6(12), 3404. doi:10.1039/c3ee42912a.

    Article  Google Scholar 

  • Muñoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Research, 40(15), 2799–2815. doi:10.1016/j.watres.2006.06.011.

    Article  Google Scholar 

  • Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56. doi:10.1016/j.jbiotec.2010.07.030.

    Article  CAS  Google Scholar 

  • Nielsen, S. L., Enríquez, S., Duarte, C. M., & Sand–Jensen, K. (1996). Scaling maximum growth rates across photosynthetic organisms. Functional Ecology, 10, 167–175.

    Article  Google Scholar 

  • OECD (2006) Test n 311. Anaerobic biodegradability of organic compounds in digested sludge by measurement of gas production

  • Olguín, E. J., Hernández, B., Araus, A., Camacho, R., González, R., Ramírez, M. E., et al. (1994). Simultaneous high-biomass protein production and nutrient removal using Spirulina maxima in sea water supplemented with anaerobic effluents. World Journal of Microbiology & Biotechnology, 10(5), 576–578. doi:10.1007/BF00367671.

    Article  Google Scholar 

  • Osundeko, O., & Pittman, J. K. (2014). Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation. Bioresource Technology, 152, 355–363. doi:10.1016/j.biortech.2013.11.035.

    Article  CAS  Google Scholar 

  • Park, J. B. K., & Craggs, R. J. (2011). Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition. Water Science & Technology, 63(8), 1758. doi:10.2166/wst.2011.114.

    Article  CAS  Google Scholar 

  • Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25. doi:10.1016/j.biortech.2010.06.035.

    Article  CAS  Google Scholar 

  • Posadas, E., Bochon, S., Coca, M., García-González, M. C., García-Encina, P. a., & Muñoz, R. (2014). Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. Journal of Applied Phycology. doi:10.1007/s10811-014-0263-0.

    Google Scholar 

  • Prandini, J. M., da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Michelon, W., & Soares, H. M. (2016). Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresource Technology, 202, 67–75. doi:10.1016/j.biortech.2015.11.082.

    Article  CAS  Google Scholar 

  • Prommuak, C., Pavasan, S., Quitain, A. T., Goto, M., & Shotipruk, A. (2013). Simultaneous production of biodiesel and free lutein from Chlorella vulgaris. Chemical Engineering & Tecnology, 36(5), 733–739.

    Article  CAS  Google Scholar 

  • Quiroz, C. E., Peebles, C., & Bradley, T. H. (2015). Scalability of combining microalgae-based biofuels with wastewater facilities: a review. Algal, 9, 160–169. doi:10.1016/j.algal.2015.03.001.

    Article  Google Scholar 

  • R core Team. (2015). R: A language and environment for statistical computing, Vienna, Austria. URL http://www.R-project.org

  • Roberts, K. P., Heaven, S., & Banks, C. J. (2016). Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion. Renewable Energy, 87, 744–753. doi:10.1016/j.renene.2015.11.009.

    Article  CAS  Google Scholar 

  • Sambusiti, C., Rollini, M., Ficara, E., Musatti, A., Manzoni, M., & Malpei, F. (2014). Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage. Bioresource Technology, 155, 122–128. doi:10.1016/j.biortech.2013.12.055.

    Article  CAS  Google Scholar 

  • Shrestha, R. P., Haerizadeh, F., & Hildebrand, M. (2013). Handbook of microalgal culture. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. doi:10.1002/9781118567166.

    Google Scholar 

  • Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409–416. doi:10.1016/j.biotechadv.2009.03.001.

    Article  CAS  Google Scholar 

  • Skorupskaite, V., Makareviciene, V., & Levisauskas, D. (2015). Optimization of mixotrophic cultivation of microalgae Chlorella sp. for biofuel production using response surface methodology. Algal Research, 7, 45–50. doi:10.1016/j.algal.2014.12.001.

    Article  Google Scholar 

  • Slegers, P. M., Lösing, M. B., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2013). Scenario evaluation of open pond microalgae production. Algal Research, 2(4), 358–368. doi:10.1016/j.algal.2013.05.001.

    Article  Google Scholar 

  • Uggetti, E., Sialve, B., Latrille, E., & Steyer, J. P. (2014). Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437–443. doi:10.1016/j.biortech.2013.11.036.

    Article  CAS  Google Scholar 

  • Vasseur, C., Bougaran, G., Garnier, M., Hamelin, J., Leboulanger, C., Le Chevanton, M., et al. (2012). Carbon conversion efficiency and population dynamics of a marine algae-bacteria consortium growing on simplified synthetic digestate: first step in a bioprocess coupling algal production and anaerobic digestion. Bioresource Technology, 119, 79–87. doi:10.1016/j.biortech.2012.05.128.

    Article  CAS  Google Scholar 

  • Wang, M., & Park, C. (2015). Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass and Bioenergy, 80(813), 30–37. doi:10.1016/j.biombioe.2015.04.028.

    Article  CAS  Google Scholar 

  • Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79(5), 707–718. doi:10.1007/s00253-008-1518-y.

    Article  CAS  Google Scholar 

  • Ward, A. J., Lewis, D. M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: a review. Algal Research, 5, 204–214. doi:10.1016/j.algal.2014.02.001.

    Article  Google Scholar 

  • Weiland, R., & Hatcher, N. (2012). Stripping sour water: the effect of heat stable salts. Petroleum Technology Quarterly, 17, 105–109.

    Google Scholar 

  • Xin, L., Hu, H., Ke, G., & Sun, Y. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494–5500. doi:10.1016/j.biortech.2010.02.016.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bresso-Seveso Sud WWTP (Amiacque CAP holding) for hosting the experimentation and SEAM staff for helpful collaboration. We gratefully thank the reviewers for their time and efforts to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Marazzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marazzi, F., Ficara, E., Fornaroli, R. et al. Factors Affecting the Growth of Microalgae on Blackwater from Biosolid Dewatering. Water Air Soil Pollut 228, 68 (2017). https://doi.org/10.1007/s11270-017-3248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3248-1

Keywords

Navigation