Skip to main content
Log in

Enrichment of Anammox Biomass from Different Seeding Sludge: Process Strategy and Microbial Diversity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The current study aims to tackle one of the main obstacles in the application of anaerobic ammonium oxidation (Anammox) technology, i.e., the extreme slow growth of the Anammox bacteria. Three conventional sludge has been tested in sequencing batch reactor for Anammox enrichment, including conventional aerobic sludge, denitrification sludge, and anaerobic sludge. With a high selection stress and insufficient oxygen control, the reactor seeded with aerobic sludge reached 50–60% total nitrogen removal after 240 days whereas that seeded with anaerobic sludge failed to establish Anammox activity. Anammox process was successfully established in the reactor seeded with denitrification sludge with a total nitrogen removal of approximately 80% after 150 days under strict oxygen control (DO <0.2 mg/L) and low selection stress. Under the same operational condition, the reactor seeded with anaerobic sludge reached only 20–30% total nitrogen removal. All the reactors experienced fluctuating performances during the enrichment process, which was believed to be the consequence of inhibitory factors such as dissolved oxygen, nitrite and free ammonia as well as undesirable coexisting bacteria which compete for the same substrate. The denaturing gradient gel electrophoresis (DGGE) band from the amplified DNA samples extracted from different enrichment stage showed a clear evolution of the microbial composition as reflected by the change in the band locations and their intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Araujo, J. C., Campos, A. C., Correa, M. M., Silva, E. C., Matte, M. H., Matte, G. R., et al. (2011). Anammox bacteria enrichment and characterization from municipal activated sludge. Water Science and Technology, 64(7), 1428–1434. doi:10.2166/wst.2011.632.

    Article  CAS  Google Scholar 

  • Chamchoi, N., & Nitisoravut, S. (2007). Anammox enrichment from different conventional sludges. Chemosphere, 66(11), 2225–2232. doi:10.1016/j.chemosphere.2006.09.036.

    Article  CAS  Google Scholar 

  • Cherkasov, N., Ibhadon, A. O., & Fitzpatrick, P. (2015). A review of the existing and alternative methods for greener nitrogen fixation. [Review]. Chemical Engineering and Processing: Process Intensification, 90, 24–33. doi:10.1016/j.cep.2015.02.004.

    Article  CAS  Google Scholar 

  • Dapena-Mora, A., Van Hulle, S. W. H., Campos, J. L., Mendez, R., Vanrolleghem, P. A., & Jetten, M. (2004). Enrichment of Anammox biomass from municipal activated sludge: experimental and modelling results. Journal of Chemical Technology and Biotechnology, 79(12), 1421–1428. doi:10.1002/jctb.1148.

    Article  CAS  Google Scholar 

  • De Clippeleir, H., Vlaeminck, S. E., Carballa, M., & Verstraete, W. (2009). A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor. Bioresource Technology, 100(21), 5010–5015. doi:10.1016/j.biortech.2009.05.031.

    Article  Google Scholar 

  • deGraaf, A. A. V., deBruijn, P., Robertson, L. A., Jetten, M. S. M., & Kuenen, J. G. (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-Uk, 142, 2187–2196.

    Article  Google Scholar 

  • Eaton, A. D., Franson, M. A. H., Association, A. P. H., Association, A. W. W., & Federation, W. E. (2005). Standard methods for the examination of water & wastewater. American Public Health Association.

  • Fernandez, I., Dosta, J., Fajardo, C., Campos, J. L., Mosquera-Corral, A., & Mendez, R. (2012). Short- and long-term effects of ammonium and nitrite on the Anammox process. Journal of Environmental Management, 95, S170–S174. doi:10.1016/j.jenvman.2010.10.044.

    Article  CAS  Google Scholar 

  • Ge, S., Wang, S., Yang, X., Qiu, S., Li, B., & Peng, Y. (2015). Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere

  • Huang, X., Gao, D., Cong, Y., & Wang, X. (2014). Enrichment of anaerobic ammonium oxidation bacteria by expanded-granular sludge bed reactor. Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology, 30(12), 1845–1853.

    CAS  Google Scholar 

  • Jaroszynski, L. W., Cicek, N., Sparling, R., & Oleszkiewicz, J. A. (2012). Impact of free ammonia on Anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor. Chemosphere, 88(2), 188–195. doi:10.1016/j.chemosphere.2012.02.085.

    Article  CAS  Google Scholar 

  • Jetten, M. S. M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., & Strous, M. (2001). Microbiology and application of the anaerobic ammonium oxidation (‘Anammox’) process. Current Opinion in Biotechnology, 12(3), 283–288. doi:10.1016/s0958-1669(00)00211-1.

    Article  CAS  Google Scholar 

  • Jin, R.-C., Yang, G.-F., Yu, J.-J., & Zheng, P. (2012). The inhibition of the Anammox process: a review. Chemical Engineering Journal, 197, 67–79. doi:10.1016/j.cej.2012.05.014.

    Article  CAS  Google Scholar 

  • Jung, J. Y., Kang, S. H., Chung, Y. C., & Ahn, D. H. (2007). Factors affecting the activity of Anammox bacteria during start up in the continuous culture reactor. Water Science and Technology, 55(1–2), 459–468. doi:10.2166/wst.2007.023.

    Article  CAS  Google Scholar 

  • Kanders, L., Areskoug, T., Schneider, Y., Ling, D., Punzi, M., & Beier, M. (2014). Impact of seeding on the start-up of one-stage deammonification MBBRs. Environmental Technology, 35(22), 2767–2773. doi:10.1080/09593330.2014.920421.

    Article  CAS  Google Scholar 

  • Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), 675–678.

    Article  CAS  Google Scholar 

  • Lotti, T., van der Star, W. R. L., Kleerebezem, R., Lubello, C., & van Loosdrecht, M. C. M. (2012). The effect of nitrite inhibition on the Anammox process. Water Research, 46(8), 2559–2569. doi:10.1016/j.watres.2012.02.011.

    Article  CAS  Google Scholar 

  • Lotti, T., Kleerebezem, R., Lubello, C., & van Loosdrecht, M. C. M. (2014). Physiological and kinetic characterization of a suspended cell Anammox culture. [Article]. Water Research, 60, 1–14. doi:10.1016/j.watres.2014.04.017.

    Article  CAS  Google Scholar 

  • Monballiu, A., Desmidt, E., Ghyselbrecht, K., De Clippeleir, H., Van Hulle, S. W. H., Verstraete, W., et al. (2013). Enrichment of anaerobic ammonium oxidizing (Anammox) bacteria from OLAND and conventional sludge: features and limitations. Separation and Purification Technology, 104, 130–137. doi:10.1016/j.seppur.2012.10.046.

    Article  CAS  Google Scholar 

  • Mulder, A., Vandegraaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiology Ecology, 16(3), 177–183. doi:10.1111/j.1574-6941.1995.tb00281.x.

    Article  CAS  Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.

    CAS  Google Scholar 

  • Nozhevnikova, A. N., Simankova, M. V., & Litti, Y. V. (2012). Application of the microbial process of anaerobic ammonium oxidation (ANAMMOX) in biotechnological wastewater treatment. Applied Biochemistry and Microbiology, 48(8), 667–684. doi:10.1134/s0003683812080042.

    Article  CAS  Google Scholar 

  • Palomba, S., Blaiotta, G., Ventorino, V., Saccone, A., & Pepe, O. (2011). Microbial characterization of sourdough for sweet baked products in the Campania region (southern Italy) by a polyphasic approach. Annals of Microbiology, 61(2), 307–314.

    Article  Google Scholar 

  • Park, H.-D., & Noguera, D. R. (2008). Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels. Journal of Microbiology and Biotechnology, 18(8), 1470–1474.

    CAS  Google Scholar 

  • Pepe, O., Ventorino, V., Cavella, S., Fagnano, M., & Brugno, R. (2013). Prebiotic content of bread prepared with flour from immature wheat grain and selected dextran-producing lactic acid bacteria. Applied and Environmental Microbiology, 79(12), 3779–3785.

    Article  CAS  Google Scholar 

  • Qing, L., XiuFen, L., ZhaoZhe, H., GuoCheng, D., & Jian, C. (2009). Effect of type of sludge on efficiency of ANAMMOX process. Journal of Ecology and Rural Environment, 25(4), 60–65.

    Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    CAS  Google Scholar 

  • Shen, L., Hu, A., Jin, R., Cheng, D., Zheng, P., Xu, X., et al. (2012). Enrichment of Anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system. Journal of Hazardous Materials, 199, 193–199. doi:10.1016/j.jhazmat.2011.10.081.

    Article  Google Scholar 

  • Strous, M., Kuenen, J. G., & Jetten, M. S. M. (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7), 3248–3250.

    CAS  Google Scholar 

  • Tran, H. T., Park, Y. J., Cho, M. K., Kim, D. J., & Ahn, D. H. (2006). Anaerobic ammonium oxidation process in an upflow anaerobic sludge blanket reactor with granular sludge selected from an anaerobic digestor. Biotechnology and Bioprocess Engineering, 11(3), 199–204. doi:10.1007/bf02932030.

    Article  CAS  Google Scholar 

  • van der Star, W. R. L., Abma, W. R., Blommers, D., Mulder, J.-W., Tokutomi, T., Strous, M., et al. (2007). Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale Anammox reactor in Rotterdam. Water Research, 41(18), 4149–4163. doi:10.1016/j.watres.2007.03.044.

    Article  Google Scholar 

  • Van Hulle, S. W. H., Vandeweyer, H. J. P., Meesschaert, B. D., Vanrolleghem, P. A., Dejans, P., & Dumoulin, A. (2010). Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chemical Engineering Journal, 162(1), 1–20. doi:10.1016/j.cej.2010.05.037.

    Article  Google Scholar 

  • vandeGraaf, A. A., deBruijn, P., Robertson, L. A., Jetten, M. S. M., & Kuenen, J. G. (1997). Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor. Microbiology-Uk, 143, 2415–2421.

    Article  CAS  Google Scholar 

  • Ventorino, V., Chiurazzi, M., Aponte, M., Pepe, O., & Moschetti, G. (2007). Genetic diversity of a natural population of Rhizobium leguminosarum bv. viciae nodulating plants of Vicia faba in the Vesuvian area. Current Microbiology, 55(6), 512–517.

    Article  CAS  Google Scholar 

  • Ventorino, V., Parillo, R., Testa, A., Aliberti, A., & Pepe, O. (2013). Chestnut biomass biodegradation for sustainable agriculture. BioResources, 8(3), 4647–4658.

    Article  Google Scholar 

  • Vlaeminck, S. E., Terada, A., Smets, B. F., Van der Linden, D., Boon, N., Verstraete, W., et al. (2009). Nitrogen removal from digested black water by one-stage partial nitritation and Anammox. Environmental Science & Technology, 43(13), 5035–5041. doi:10.1021/es803284y.

    Article  CAS  Google Scholar 

  • Wang, T., Zhang, H., Gao, D., Yang, F., Yang, S., Jiang, T., et al. (2011). Enrichment of Anammox bacteria in seed sludges from different wastewater treating processes and start-up of Anammox process. Desalination, 271(1–3), 193–198. doi:10.1016/j.desal.2010.12.034.

    Article  CAS  Google Scholar 

  • Zhou, S., & Yao, J. (2010). Rapid enrichment and acclimation of anaerobic ammonium oxidation by using activated sludge from a landfill leachate treatment plant. Journal of Food Agriculture & Environment, 8(2), 1133–1137.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out in the framework of the Project “Modular photo-biologic reactor for bio-hydrogen: application to dairy waste—RE-MIDA” by the Agriculture Department of the Campania Region in the context of the Programme of Rural Development 2007–2013, Measure 124. The authors would also like to acknowledge the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments) under the EU grant agreement FPA No 2010-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiji Ding.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors declare that the research involves no human participants nor animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Ventorino, V., Panico, A. et al. Enrichment of Anammox Biomass from Different Seeding Sludge: Process Strategy and Microbial Diversity. Water Air Soil Pollut 228, 10 (2017). https://doi.org/10.1007/s11270-016-3181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3181-8

Keywords

Navigation