Skip to main content
Log in

Sorption of a Cationic Surfactant Benzyldimethyldodecyl Ammonium Chloride onto a Natural Zeolite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of surfactants in groundwater and in drinking and superficial waters is a major public health concern. Recently, various treatment technologies have been studied to remove these pollutants; among them, the treatments based on the sorption onto natural adsorbing materials appear more eco-friendly and with very interesting removal efficiencies. The sorption of the cationic surfactant benzyldimethyldodecyl ammonium chloride (BDC-12) onto zeolitic tuff (Si/Al ratio = 2.4) was well described by a pseudo-second-order equation with a kinetic constant not depending on the exchangeable cationic form of the zeolite. The isosteric enthalpies and entropies (∆istH and ∆istS) obtained from sorption isotherms were negative, and their absolute values increased with decreasing amounts of BDC-12 bound at the equilibrium (qe). Zeolite sorbitivity (qe/unit dry mass sorbent) for BDC-12 increased with NaCl concentration in the batch solution, suggesting that the sorption process does not involve cation exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61(1-3), 43–56.

    Article  CAS  Google Scholar 

  • Capasso, S., Coppola, E., Iovino, P., Salvestrini, S., & Colella, C. (2007). Sorption of humic acids on zeolitic tuffs. Microporous and Mesoporous Materials, 105, 324–328.

    Article  CAS  Google Scholar 

  • Clara, M., Scharf, S., Scheffknecht, C., & Gans, O. (2007). Occurrence of selected surfactants in untreated and treated sewage. Water Research, 41(19), 4339–4348.

    Article  CAS  Google Scholar 

  • Colella, C. (1996). Ion exchange equilibria in zeolite minerals. Mineralium Deposita, 31(6), 554–562.

    Article  CAS  Google Scholar 

  • Cooney, D. O. (1999). Adsorption Design for Wastewater Treatment. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Daifullah, A. A., Girgis, B. S., & Gad, H. M. (2004). A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloid Surface A, 235(1-3), 1–10.

    Article  CAS  Google Scholar 

  • Dávila-Estrada, M., Ramírez-García, J. J., Díaz-Nava, M. C., Solache-Ríos, M. (2016). Sorption of 17α-Ethinylestradiol by Surfactant-Modified Zeolite-Rich Tuff from Aqueous Solutions. Water, Air, & Soil Pollution, doi:10.1007/s11270-016-2850-y

  • Faisal, A. A. H., & Hmood, Z. A. (2013). Groundwater protection from cadmium contamination by zeolite permeable reactive barrier. Desalination and Water Treatment, 53(5), 1377–1386. doi:10.1080/19443994.2013.855668.

    Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418.

    Article  CAS  Google Scholar 

  • Gutiérrez-Segura, E., Solache-Ríos, M., Colín-Cruz, A., & Fall, C. (2012). Adsorption of cadmium by Na and Fe modified zeolitic tuffs and carbonaceous material from pyrolyzed sewage sludge. Journal of Environmental Management, 97, 6–13.

    Article  Google Scholar 

  • Hendershot, W. H., Lalande, H., & Duquette, M. (2008). Soil reaction and exchangeable acidity. In M.R. Carter, E.G. Gregorich (Eds.), Soil Sampling and Methods of Analysis (chapter 16). Boca Raton: CRC Press.

  • Iovino, P., Leone, V., Salvestrini, S., & Capasso, S. (2015). Sorption of non-ionic organic pollutants onto immobilized humic acid. Desalination and Water Treatment, 56(1), 55–62.

    Article  CAS  Google Scholar 

  • Khalid, M., Joly, G., Renaud, A., & Magnoux, P. (2004). Removal of Phenol from Water by Adsorption Using Zeolites. Industrial and Engineering Chemistry Research, 43(17), 5275–5280. doi:10.1021/ie0400447.

    Article  CAS  Google Scholar 

  • Knorre, D.A., Besedina, E., Karavaeva, I.E., Smirnova, E.A., Markova, O.V., Severin, F.F., (2016). Alkylrhodamines enhance the toxicity of clotrimazole and benzalkonium chloride by interfering with yeast pleiotropic ABC-transporters. FEMS Yeast Research, doi:10.1093/femsyr/fow030

  • Leone, V., Canzano, S., Iovino, P., Salvestrini, S., Capasso, S., (2013a). A novel organo-zeolite adduct for environmental applications: Sorption of phenol. Chemosphere, 91(3), 415-420

  • Leone, V., Iovino, P., Canzano, S., Salvestrini, S., Capasso, S., (2013b) Water Purification from Humic Acids by Clinoptilolite-Rich Tuff. Environmental Engineering and Management Journal, 12(11), 3-6

  • Leone, V., Iovino, P., Salvestrini, S., & Capasso, S. (2014). Sorption of non-ionic organic pollutants onto a humic acids-zeolitic tuff adduct: Thermodynamic aspects. Chemosphere, 95, 75–80.

    Article  CAS  Google Scholar 

  • Martinez-Carballo, E., Sitka, A., Gonzalez-Barreiro, C., Kreuzinger, N., Furhacker, M., Scharf, S., & Gans, O. (2007). Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part I. Application to surface, waste and indirect discharge water samples in Austria. Environmental Pollution, 145(2), 489–496.

    Article  CAS  Google Scholar 

  • Newsam, J. M. (1986). The zeolite cage structure. Science, 231, 1093–1099.

    Article  CAS  Google Scholar 

  • Prisciandaro, M., & Mazziotti di Celso, G. (2016). On the removal of natural organic matter from superficial water by using UF and MF membranes. Desalination and Water Treatment, 57, 2481–2488.

    Article  CAS  Google Scholar 

  • Ren, H., Jiang, J., Wu, D., Gao, Z., Sun, Y., & Luo, C. (2016). Selective Adsorption of Pb(II) and Cr(VI) by Surfactant-Modified and Unmodified Natural Zeolites: A Comparative Study on Kinetics, Equilibrium, and Mechanism. Water, Air, & Soil Pollution, 227, 101.

    Article  Google Scholar 

  • Reynolds, L., Blok, J., Demorsier, A., Gerike, P., Wellens, H., & Bontinck, W. J. (1987). Evaluation of the toxicity of substances to be assessed for biodegradability. Chemosphere, 16, 2259–2277.

    Article  CAS  Google Scholar 

  • Richard, J., & Lewis, S. R. (2005). Sax’s Dangerous Properties of Industrial Materials (11th ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., & Sing, K. S. (2013). Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Oxford: Accademic Press.

    Google Scholar 

  • Sainio, T., & Turku, I. (2010). Adsorption of cationic surfactants on a neutral polymer adsorbent: Investigation of the interactions by using mathematical modeling. Colloid Surface A, 358(1-3), 57–67.

    Article  CAS  Google Scholar 

  • Salvestrini, S., Leone, V., Iovino, P., Canzano, S., & Capasso, S. (2014). Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms. Journal of Chemical Thermodynamics, 68, 310–316.

    Article  CAS  Google Scholar 

  • Scott, M. J., & Jones, M. N. (2002). The biodegradation of surfactants in the environment. Biochimica et Biophysica Acta, 1508, 235–251.

    Article  Google Scholar 

  • Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., Farhadi, F., & Nazmara, S. (2011). Kinetic Study of BTEX Removal Using Granulated Surfactant-Modified Natural Zeolites Nanoparticles. Water, Air, & Soil Pollution, 219(1), 443–457.

    Article  CAS  Google Scholar 

  • Shavandi, M. A., Haddadian, Z., Ismail, M. H. S., Abdullah, N., & Abidin, Z. Z. (2012). Removal of Residual Oils from Palm Oil Mill Effluent by Adsorption on Natural Zeolite. Water, Air, & Soil Pollution, 223(7), 4017–4027.

    Article  CAS  Google Scholar 

  • Tortora, F., Innocenzi, V., Prisciandaro, M., Vegliò, F., & Mazziotti di Celso, G. (2016). Heavy Metal Removal from Liquid Wastes by Using Micellar-Enhanced Ultrafiltration. Water, Air, & Soil Pollution, 227, 1–7.

    Article  CAS  Google Scholar 

  • Turku, I., & Sainio, T. (2009). Modeling of adsorptive removal of benzalkonium chloride from water with a polymeric adsorbent. Separation and Purification Technology, 69(2), 185–194.

    Article  CAS  Google Scholar 

  • Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24.

    Article  CAS  Google Scholar 

  • Ying, G. G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International, 32, 417–431.

    Article  CAS  Google Scholar 

  • Ying, G. G., Williams, B., & Kookana, R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylates-a review. Environment International, 28, 215–226.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Leone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leone, V., Iovino, P. Sorption of a Cationic Surfactant Benzyldimethyldodecyl Ammonium Chloride onto a Natural Zeolite. Water Air Soil Pollut 227, 409 (2016). https://doi.org/10.1007/s11270-016-3108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3108-4

Keywords

Navigation