Skip to main content
Log in

Hydrolytic-Acidogenic Fermentation of Organic Solid Waste for Volatile Fatty Acids Production at Different Solids Concentrations and Alkalinity Addition

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Intermediate products from anaerobic fermentation, such as volatile fatty acids (VFA), are the preferred carbon sources for the production of added-value products, namely polyhydroxyalkanoates (PHA) or bioenergy. Organic fraction of municipal solid waste (OFMSW) can be valorized through the application of a hydrolytic-acidogenic stage, thus reducing its pollutant content and at the same time that it is obtaining high-value products (VFA). In this work, the anaerobic fermentation of OFMSW into VFA (production and profile) and the influence of both total solids (TS) content in the reactor and alkalinity addition were studied. The increase on TS content led to a decrease on the acidification degree whereas the increase on the alkalinity addition led to a higher degree of acidification. Hence, the highest degree of acidification (77.59 %) was obtained at the lowest TS content (5 %) and at the highest alkalinity addition (50 g CaCO3 L−1). However, depending on the ultimate use of the produced VFA, the acidified residue presenting the highest VFA content (98.96 %) with higher propionic acid concentration, which is a more suitable VFA mixture for the production of high-quality PHA, was obtained at an intermediate TS content (8 %). From the response surfaces obtained, it was observed that all response variables (VFA production, degree of acidification, and effluent quality) presented a higher dependency on TS content than on initial alkalinity addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albuquerque, M. G., Eiroa, M., Torres, C., Nunes, B. R., & Reis, M. A. M. (2007). Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. Journal of Biotechnology, 130(4), 411–421.

    Article  CAS  Google Scholar 

  • Albuquerque, M. G., Martino, V., Pollet, E., Avérous, L., & Reis, M. A. M. (2011). Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. Journal of Biotechnology, 151(1), 66–76.

    Article  CAS  Google Scholar 

  • APHA, AWWA, & WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Appels, L., Baeyens, J., Degréve, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781.

    Article  CAS  Google Scholar 

  • Aytar, P., Gedikli, S., Sam, M., Farizoglu, B., & Çabuk, A. (2013). Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation. Environmental Science and Pollution Research, 20, 3060–3067.

    Article  CAS  Google Scholar 

  • Bengtsson, S., Hallquist, J., Werker, A., & Welander, T. (2008). Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on VFA production. Biochemical Engineering Journal, 40, 492–499.

    Article  CAS  Google Scholar 

  • Bertanza, G., Galessi, R., Menoni, L., Pedrazzani, R., Salvetti, R., & Zanaboni, S. (2015). Anaerobic treatability of liquid residue from wet oxidation of sewage sludge. Environmental Science and Pollution Research, 22, 7317–7326.

    Article  CAS  Google Scholar 

  • Bouallagui, H., Touhami, Y., Ben Cheikh, R., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemestry, 40(3-4), 989–995.

    Article  CAS  Google Scholar 

  • Cai, M., Chua, H., Zhao, Q., Sin, N. S., & Ren, J. (2009). Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresource Technology, 100, 1399–1405.

    Article  CAS  Google Scholar 

  • Capela, I., Rodrigues, A., Silva, F. C., Nadais, H., & Arroja, L. (2008). Impact of industrial sludge and cattle manure on anaerobic digestion of the OFMSW under mesophilic conditions. Biomass and Bioenergy, 32(3), 245–251.

    Article  CAS  Google Scholar 

  • Chen, Y. G., Li, X., Zheng, X., & Wang, D. B. (2013). Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Research, 47(2), 615–622.

    Article  CAS  Google Scholar 

  • Cropper, T. E., & Hanna, E. (2014). An analysis of the climate of Macaronesia, 1865-2012. International Journal of Climatology, 34, 604–622.

    Article  Google Scholar 

  • Dahiya, S., Sarkar, O., Swamy, Y. V., & Venkata Mohan, S. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology, 182, 103–113.

    Article  CAS  Google Scholar 

  • Di Maria, F., & Micale, C. (2015). Life cycle analysis of management options for organic waste collected in an urban area. Environmental Science and Pollution Research, 22, 248–263.

    Article  Google Scholar 

  • Dionisi, D., Carucci, G., Papini, M. P., Riccardi, C., Majone, M., & Carrasco, F. (2005). Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Research, 39, 2076–2084.

    Article  CAS  Google Scholar 

  • Dogan, E., Tunaev, T., Erguder, T. H., & Demirer, G. N. (2008). Performance of leaching bed reactor converting the organic fraction of municipal solid waste to organic acids and alcohols. Chemosphere, 74, 797–803.

    Article  Google Scholar 

  • Doi, Y., Kunioka, M., Nakamura, Y., & Soga, K. (1987). Biosynthesis of copolyesters in Alcaligenes eutrophus H16 from carbon-13 labeled acetate and propionate. Macromolecules, 20(12), 2988–2991.

    Article  CAS  Google Scholar 

  • Fang, H. H., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82, 87–93.

    Article  CAS  Google Scholar 

  • Fdez-Güelfo, L. A., Alvarez-Gallego, C., Márquez, D. S., & García, L. I. R. (2011). Biological pretreatment applied to industrial organic fraction of municipal solid wastes (OFMSW): effect on anaerobic digestion. Chemical Engineering Journal, 172, 321–325.

    Article  Google Scholar 

  • Fontanille, P., Kumar, V., Christophe, G., Nouaille, R., & Larroche, C. (2012). Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technology, 114, 443–449.

    Article  CAS  Google Scholar 

  • Gameiro, T., Sousa, F., Silva, F. C., Couras, C., Louros, V., Nadais, H., & Capela, I. (2015). Olive oil wastewater to volatile fatty acids: statistical study of the acidogenic process. Water, Air, & Soil Pollution, 226, 115.

    Article  Google Scholar 

  • Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., & Ahring, B. K. (2003). Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge: effect of pre-treatment at elevated temperature. Water Research, 37, 4561–4572.

    Article  CAS  Google Scholar 

  • Giudicianni, P., Bozza, P., Sorrentino, G., & Ragucci, R. (2015). Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste. Waste Management, 44, 125–134.

    Article  Google Scholar 

  • INE, I. P. (2014). Estatísticas do Ambiente 2013. Lisboa.

    Google Scholar 

  • Jankowska, E., Chwialkowska, J., Stodolny, M., & Oleskowicz-Popiel, P. (2015). Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresource Technology, 190, 274–280.

    Article  CAS  Google Scholar 

  • Jiang, W. Z., Kitamura, Y., & Li, B. (2005). Improving acidogenic performance in anaerobic degradation of solid organic waste using a rotational drum fermentation system. Bioresource Technology, 96, 1537–43.

    Article  CAS  Google Scholar 

  • Jiang, Y. M., Chen, Y. G., & Zheng, X. (2009). Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Environmental Science & Technology, 43, 7734–7741.

    Article  CAS  Google Scholar 

  • Jiang, Y., Marang, L., Tamis, J., van Loosdrecht, M. C. M., Dijkman, H., & Kleerebezem, R. (2012). Waste to resource: converting paper mill wastewater to bioplastic. Water Research, 46(17), 5517–5530.

    Article  CAS  Google Scholar 

  • Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., & Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. Journal of Bioscience and Bioengineering, 95, 271–275.

    Article  CAS  Google Scholar 

  • Koutinas, A. A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Garcia, I. L., Kookos, I. K., Papanikolaou, S., Kwanb, T. H., & Lin, C. S. K. (2014). Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 43, 2587–2627.

    Article  CAS  Google Scholar 

  • Lau, N.-S., Chee, J. Y., Tsuge, T., & Sudesh, K. (2010). Biosynthesis and mobilization of a novel polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer produced by Burkholderia sp. USM (JCM15050). Bioresource Technology, 101(20), 7916–7923.

    Article  CAS  Google Scholar 

  • Le Hyaric, R., Benbelkacem, H., Bollon, J., Bayard, R., Escudié, R., & Buffière, P. (2012). Influence of moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate. J Chemical Technology and Biotechnology, 87, 1032–1035.

    Article  Google Scholar 

  • Lee, W. S., Chua, A. S. M., Yeoh, H. K., & Ngoh, G. C. (2014). A review of the production and applications of waste-derived volatile fatty acids. Chemical Engineering Journal, 235, 83–99.

    Article  CAS  Google Scholar 

  • Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821–826.

    Article  CAS  Google Scholar 

  • Lim, S., Kim, B. K., Jeong, C., Choi, J., Ahn, Y. H., & Chang, H. N. (2008). Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresource Technology, 99(16), 7866–7874.

    Article  CAS  Google Scholar 

  • Liotta, F., Chatellier, P., Esposito, G., Fabbricino, M., Frunzo, L., van Hullebusch, E. D., Lens, P. N. L., & Pirozzi, F. (2015). Modified anaerobic digestion model no. 1 for dry and semi-dry anaerobic digestion of solid organic waste. Environmental Technology, 36(7), 870–880.

    Article  CAS  Google Scholar 

  • Liu, H., Wang, J., Liu, X., Fu, B., Chen, J., & Yu, H. Q. (2012). Acidogenic fermentation of proteinaceous sewage sludge: effect pH. Water Research, 43, 799–807.

    Article  Google Scholar 

  • Malina, J. F., & Pohland, F. G. (1992). Design of anaerobic processes for the treatment of industrial and municipal wastes. Water Quality Management Library Vol., 7.

  • Marouani, L., Bouallagui, H., Ben Cheikh, R., & Hamdi, M. (2002). Biomethanation of green wastes of wholesale market of Tunis. In Proceedings of the International Symposium on Environmental Pollution Control and Waste Management, 7–10 January 2002 (pp. 318–23).

    Google Scholar 

  • Matthies, C., & Schink, B. (1992). Reciprocal isomerization of butyrate and iso-butyrate by the strictly anaerobic bacterium strain WoG13 and methanogenic iso-butyrate degradation by a defined triculture. Applied and Environmental Microbiology, 58(5), 1435–1439.

    CAS  Google Scholar 

  • Merlin Christy, P., Gopinath, L. R., & Divya, D. (2014). A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167–173.

    Article  CAS  Google Scholar 

  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. (2009). Response surface methodology: process and product optimization using designed experiments. Series in probability and statistics (p. 704). New York: Wiley.

    Google Scholar 

  • Pardelha, F., Albuquerque, M. G. E., Reis, M. A. M., Dias, H. M. L., & Oliveira, R. (2012). Flux balance analysis of mixed microbial cultures: application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty. Journal of Biotechnology, 162, 336–345.

    Article  CAS  Google Scholar 

  • Park, W. J., Ahn, J. H., Hwang, S., & Lee, C. K. (2010). Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Bioresource Technology, 101(1), S13–S16.

    Article  CAS  Google Scholar 

  • Raposo, F., de la Rubia, M. A., Borja, R., & Alaiz, M. (2008). Assessment of a modified and optimised method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content. Talanta, 76, 448–453.

    Article  CAS  Google Scholar 

  • Rodriguéz-Pimentel, R. I., Rodriguéz-Pérez, S., Monroy-Hermosillo, O., & Ramírez-Vives, F. (2015). Effect of organic loading rate on the performance of two-stage anaerobic digestion of the organic fraction of municipal solid waste (OFMSW). Water Science & Technology, 72(3), 384–390.

    Article  Google Scholar 

  • Romano, R. T., & Zhang, R. (2008). Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor. Bioresource Technology, 99(3), 631–637.

    Article  CAS  Google Scholar 

  • Silva, F. C., Serafim, L. S., Nadais, H., Arroja, L., & Capela, I. (2013). Acidogenic fermentation towards valorisation of organic waste streams into volatile fatty acids. Chemical & Biochemical Engineering Quarterly, 27(4), 467–476.

    CAS  Google Scholar 

  • Silvestre, G., Bonmatí, A., & Fernández, B. (2015). Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: effect of collection system and particle size. Waste Management, 43, 137–143.

    Article  CAS  Google Scholar 

  • Singh, M., Kumar, P., Ray, S., & Kalia, V. C. (2015). Challenges and opportunities for customizing polyhydroxyalkanoates. Indian Journal of Microbiology, 55(3), 235–249.

    Article  CAS  Google Scholar 

  • van Lier, B., Rebac, S., Lens, P., van Bijnen, F., Elferink, S., Stams, M., & Lettinga, G. (1997). Anaerobic treatment of partly acidified wastewater in a two-stage expanded granular sludge bed (EGSB) system at 8 degrees C. Water Science & Technology, 36(6–7), 317–324.

    Google Scholar 

  • Vergine, P., Zábranská, J., & Canziani, R. (2014). Low temperature microwave and conventional heating pre-treatments to improve sludge anaerobic biodegradability. Water Science & Technology, 69(3), 518–524.

    Article  CAS  Google Scholar 

  • Vergine, P., Sousa, F., Lopes, M., Silva, F. C., Gameiro, T., Nadais, H., & Capela, I. (2015). Synthetic soft drink wastewater suitability for the production of volatile fatty acids. Process Biochemistry, 50, 1308–1312.

    Article  CAS  Google Scholar 

  • Wang, Q. H., Kuninobu, M., Ogawa, H. I., & Kato, Y. (1999). Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass and Bioenergy, 16(6), 407–416.

    Article  CAS  Google Scholar 

  • Wang, K., Yin, J., Shen, D., & Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresource Technology, 161, 395–401.

    Article  CAS  Google Scholar 

  • Wu, M., Sun, K., & Zhang, Y. (2006). Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste. Journal of Zhejiang University SCIENCE B, 7(3), 180–185.

    Article  CAS  Google Scholar 

  • Xing, Y., Li, Z., Fan, Y., & Hou, H. (2010). Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environmental Science and Pollution Research, 17, 392–399.

    Article  CAS  Google Scholar 

  • Xu, S. Y., Karthikeyan, O. P., Selvam, A., & Wong, J. W. C. (2012). Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bioresource Technology, 126, 425–430.

    Article  CAS  Google Scholar 

  • Xue, Y., Liu, H., Chen, S., Dichtl, N., Dai, X., & Li, N. (2015). Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chemical Engineering Journal, 264, 174–180.

    Article  CAS  Google Scholar 

  • Yu, H. Q., Fang, H. H. P., & Gu, G. W. (2002). Comparative performance of mesophilic and thermophilic acidogenic upflow reactors. Process Biochemistry, 38(3), 447–454.

    Article  CAS  Google Scholar 

  • Zhen, G., Lu, X., Li, Y., & Zhao, Y. (2014). Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion. Applied Energy, 128, 93–102.

    Article  CAS  Google Scholar 

  • Zsigraiová, Z., Tavares, G., Semiao, V., & Carvalho, M. D. G. (2009). Integrated waste-to-energy conversion and waste transportation within island communities. Energy, 34, 623–635.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due, for the financial support to CESAM (UID/AMB/50017), to FCT/MEC through national funds (project PTDC/AMB-AAC/111316/2009), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. M Lopes acknowledges her Ph.D. grant (153/CG/DAFII/NB/21371/2011) from CAMOES – Instituto da Cooperação e da Língua.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Gameiro.

Additional information

Tânia Gameiro and Maria Lopes contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gameiro, T., Lopes, M., Marinho, R. et al. Hydrolytic-Acidogenic Fermentation of Organic Solid Waste for Volatile Fatty Acids Production at Different Solids Concentrations and Alkalinity Addition. Water Air Soil Pollut 227, 391 (2016). https://doi.org/10.1007/s11270-016-3086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3086-6

Keywords

Navigation