Skip to main content
Log in

Tetracyclines Sorption in the Presence of Cadmium on River Sediments: the Effects of Sorption Mechanism and Complex Properties

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Metal cations could enhance the sorption of tetracyclines but sometimes the effects are negligible. It is still not clear how these metals produce different effects. In this study, the sorption of chlortetracycline (CTC), tetracycline (TC), and oxytetracycline (OTC) was performed in the presence of Cd (II) to reveal the unknown mechanisms with two river sediments. It is found that Cd (II) could enhance the sorption of TCs on sediment SS, while it is negligible on sediment SY. For different tetracyclines, the enhancement effect by Cd (II) was more significant for CTC, while it is inferior for OTC and TC. Sorption isotherms of Cd (II) under strong and weak background electrolyte and pH decrease of sorption solutions indicate specific sorption is major on SY and cation exchange is significant on SS. Consequently, specific sorption is unfavorable for the enhanced sorption of TCs in the presence of Cd (II) because it is not favorable for the sorption of Cd-TCs by complexation and cation exchange. By the theoretical calculations, it is found that the significant enhancement of CTC is due to the higher electron affinity of Cd-CTC complex than the others to the surface groups. In conclusion, TCs sorption will not be affected by Cd (II) on sediments or soils with strong specific sorption characters of Cd (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avisar, D., Primor, O., Gozlan, I., & Mamane, H. (2010). Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water, Air, & Soil Pollution, 209(1–4), 439–450.

    Article  CAS  Google Scholar 

  • Bu, Q., Wang, B., Huang, J., Deng, S., & Yu, G. (2013). Pharmaceuticals and personal care products in the aquatic environment in China: a review. Journal of Hazardous Materials, 262, 189–211. doi:10.1016/j.jhazmat.2013.08.040.

    Article  CAS  Google Scholar 

  • Chang, B.-V., & Ren, Y.-L. (2015). Biodegradation of three tetracyclines in river sediment. Ecological Engineering, 75, 272–277. doi:10.1016/j.ecoleng.2014.11.039.

    Article  Google Scholar 

  • Chen, Z., Sun, L., Luo, A., He, Y., Zhang, Y., & Li, Y. (2015). Photoluminescent materials for highly toxic metals sensing: from downconversion to upconversion. Trends in Environmental Analytical Chemistry, 6–7, 1–9. doi:10.1016/j.teac.2015.04.001.

    Article  Google Scholar 

  • Fernández-Calviño, D., Bermúdez-Couso, A., Arias-Estévez, M., Nóvoa-Muñoz, J. C., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., et al. (2015). Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: stirred flow chamber experiments. Chemosphere, 134, 361–366. doi:10.1016/j.chemosphere.2015.04.098.

    Article  Google Scholar 

  • Floroiu, R. M., Davis, A. P., & Torrents, A. (2001). Cadmium adsorption on aluminum oxide in the presence of polyacrylic acid. Environmental Science & Technology, 35(2), 348–353.

    Article  CAS  Google Scholar 

  • Ghandour, M. A., Azab, H. A., Hassan, A., & Ali, A. M. (1992). Potentiometric studies on the complexes of tetracycline (TC) and oxytetracyclin (OTC) with some metal ions. Chemical Monthly, 123(1–2), 51–58. doi:10.1007/BF01045296.

    Article  CAS  Google Scholar 

  • Gulbis, J., & Everett, G. W., Jr. (1976). Metal binding characteristics of tetracycline derivatives in DMSO solution. Tetrahedron, 32(8), 913–917. doi:10.1016/0040-4020(76)85048-X.

    Article  CAS  Google Scholar 

  • Huang, B., Li, Z., Huang, J., Chen, G., Nie, X., Ma, W., et al. (2015). Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil. Environmental Science and Pollution Research, 22(15), 11467–11477. doi:10.1007/s11356-015-4386-x.

    Article  CAS  Google Scholar 

  • Jezowska-Bojczuk, M., Lambs, L., Kozlowski, H., & Berthon, G. (1993). Metal ion-tetracycline interactions in biological fluids. 10. Structural investigations on copper (II) complexes of tetracycline, oxytetracycline, chlortetracycline, 4-(dedimethylamino) tetracycline, and 6-desoxy-6-demethyltetracycline and discussion of their binding modes. Inorganic Chemistry, 32(4), 428–437. doi:10.1021/ic00056a015.

    Article  CAS  Google Scholar 

  • Jia, D.-A., Zhou, D.-M., Wang, Y.-J., Zhu, H.-W., & Chen, J.-L. (2008). Adsorption and cosorption of Cu (II) and tetracycline on two soils with different characteristics. Geoderma, 146(1–2), 224–230. doi:10.1016/j.geoderma.2008.05.023.

    Article  CAS  Google Scholar 

  • Li, T., Di, Z., Yang, X., & Sparks, D. L. (2011). Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils. Journal of Hazardous Materials, 192(3), 1616–1622.

    Article  CAS  Google Scholar 

  • Li, Y., Pan, T., Miao, D., Chen, Z., & Tao, Y. (2015). Sorption–desorption of typical tetracyclines on different soils: environment hazards analysis with partition coefficients and hysteresis index. Environmental Engineering Science, 32(10), 865–871. doi:10.1089/ees.2014.0325.

    Article  CAS  Google Scholar 

  • Meng, B., Liu, J., Li, Y., & Shi, X. (2015). Speciation and ecological risk assessment of heavy metals in surfacial sediments of Lianshui River in Beijing. Journal of Agro-Environment Science, 34(5), 964–972 (in Chinese).

    CAS  Google Scholar 

  • Parolo, M. E., Avena, M. J., Pettinari, G. R., & Baschini, M. T. (2012). Influence of Ca2+ on tetracycline adsorption on montmorillonite. Journal of Colloid and Interface Science, 368(1), 420–426. doi:10.1016/j.jcis.2011.10.079.

    Article  CAS  Google Scholar 

  • Phillips, I. R. (1999). Copper, lead, cadmium, and zinc sorption by waterlogged and air-dry soil. Journal of Soil Contamination, 8(3), 343–364. doi:10.1080/10588339991339379.

    Article  CAS  Google Scholar 

  • Pils, J. R. V., & Laird, D. A. (2007). Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environmental Science & Technology, 41(6), 1928–1933.

    Article  CAS  Google Scholar 

  • Sassman, S. A., & Lee, L. S. (2005). Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology, 39(19), 7452–7459. doi:10.1021/es0480217.

    Article  CAS  Google Scholar 

  • Scalmani, G., & Frisch, M. J. (2010). Continuous surface charge polarizable continuum models of solvation. I. General formalism. The Journal of Chemical Physics, 132(11), 114110. doi:10.1063/1.3359469.

    Article  Google Scholar 

  • Schindler, P. W., Fürst, B., Dick, R., & Wolf, P. U. (1976). Ligand properties of surface silanol groups. I. surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+. Journal of Colloid and Interface Science, 55, 469–475.

    Article  CAS  Google Scholar 

  • Teixidó, M., Granados, M., Prat, M. D., & Beltrán, J. L. (2012). Sorption of tetracyclines onto natural soils: data analysis and prediction. Environmental Science and Pollution Research, 19(8), 3087–3095.

    Article  Google Scholar 

  • Waller, C. W., Hutchings, B. L., Broschard, R. W., Goldman, A. A., Stein, W. J., Wolf, C. F., et al. (1952). Degradation of aureomycin. VII.1 aureomycin and anhydroaureomycin. Journal of the American Chemical Society, 74(19), 4981–4982. doi:10.1021/ja01139a539.

    Google Scholar 

  • Wan, Y., Bao, Y., & Zhou, Q. (2010). Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere, 80(7), 807–812. doi:10.1016/j.chemosphere.2010.04.066.

    Article  CAS  Google Scholar 

  • Wang, D., Sui, Q., Zhao, W., Lv, S., Qiu, Z., & Yu, G. (2014). Pharmaceutical and personal care products in the surface water of China: a review. Chinese Science Bulletin, 59, 743–751 (in Chinese).

    Article  Google Scholar 

  • Wessels, J. M., Ford, W. E., Szymczak, W., & Schneider, S. (1998). The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: a spectroscopic study. Journal of Physical Chemistry B, 102(46), 9323–9331. doi:10.1021/jp9824050.

    Article  CAS  Google Scholar 

  • Xu, G., Liu, J., Pei, S., Gao, M., Hu, G., & Kong, X. (2015). Sediment properties and trace metal pollution assessment in surface sediments of the Laizhou Bay, China. Environmental Science and Pollution Research, 22(15), 11634–11647. doi:10.1007/s11356-015-4393-y.

    Article  CAS  Google Scholar 

  • Zhang, Z., Sun, K., Gao, B., Zhang, G., Liu, X., & Zhao, Y. (2011). Adsorption of tetracycline on soil and sediment: effects of pH and the presence of Cu (II). Journal of Hazardous Materials, 190(1–3), 856–862. doi:10.1016/j.jhazmat.2011.04.017.

    Article  CAS  Google Scholar 

  • Zhang, Q.-Q., Ying, G.-G., Pan, C.-G., Liu, Y.-S., & Zhao, J.-L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11), 6772–6782. doi:10.1021/acs.est.5b00729.

    Article  CAS  Google Scholar 

  • Zhao, Y., Jinju, G., Xiaorong, W., Xueyuan, G., & Shixiang, G. (2011). Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects. Ecotoxicology, 20(5), 1141–1147. doi:10.1007/s10646-011-0665-6.

    Article  CAS  Google Scholar 

  • Zhao, Y., Gu, X., Gao, S., Geng, J., & Wang, X. (2012). Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects. Geoderma, 183(3), 12–18.

    Article  Google Scholar 

  • Zhao, Y., Tan, Y., Guo, Y., Gu, X., Wang, X., & Zhang, Y. (2013). Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils. Environmental Pollution, 180(3), 206–213.

    Article  CAS  Google Scholar 

  • Zhu, G., Guo, Q., Chen, T., Marc, P., Yang, J., Zhang, H., et al. (2013). Pollution characteristics and risk assessment of heavy metals in the sediments of Nansha River in Beijing. Chinese Journal of Ecology, 32(8), 2148–2153 (in Chinese).

    Google Scholar 

  • Zou, X., Zhang, C., Ning, J., Wei, L., & Yang, S. (2012). Behaviors of copper ions different in concentration in sorption-desorption by soils—and existence of weak-specific—adsorption state. Acta Pedologica Sinica, 49(5), 892–900.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Science Foundation of Beijing Municipality (Grant No. 8142020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Table S1 Calibration curves for TCs. Table S2 Freundlich parameters for the sorption isotherms of TCs as affected by Cd (II). Fig. S1 possible configurations of TCs. Fig. S2 sediment dispersions in triangular flasks and containers. Fig. S3 TC sorption isotherms in triangular flasks and centrifuge tubes. Fig. S4 FTIR spectra of sediments and sediments after sorption of TC and Cd (II). (DOC 2133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, G., Sun, L. et al. Tetracyclines Sorption in the Presence of Cadmium on River Sediments: the Effects of Sorption Mechanism and Complex Properties. Water Air Soil Pollut 227, 283 (2016). https://doi.org/10.1007/s11270-016-2982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2982-0

Keywords

Navigation