Skip to main content
Log in

Agricultural Drainage Filters. II. Phosphorus Retention and Release at Different Flow Rates

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Granular drainage filters may provide new innovative solutions for removing phosphorus (P) from agricultural tile drainage water. The influence of filter sorbent properties is well recognized; however, intragranular diffusion may be critical for the P retention efficiency in drainage filters, where convective velocities are generally high. This was investigated in granular materials (Leca, Filtralite-P®, granulated Limestone, crushed Seashells, calcined diatomite earth (CDE), and poorly ordered Fe hydroxide aggregates (CFH)) with known solute transport behavior at variable flow rates. Phosphorus retention and release were investigated during continuous P loading with a constant inlet concentration of 0.3 mg P L−1 followed by a subsequent P release phase. A parallel batch sorption experiment ranked the materials according to strength of P retention CFH > Filtralite-P® > Seashells > Limestone > Leca, while CDE was a P source at low solution concentrations. Column experiments demonstrated that filters with non-equilibrium transport (CFH and Seashells) attained higher P retention rates and lower P release rates compared to filters with equilibrium flow (Filtralite-P® and Limestone). This behavior was even more pronounced as flow rate increased and was attributed to intragranular diffusion of P in CFH and Seashells, which would maintain concentration gradients between mobile convective water and immobile domains. This facilitated further diffusion and thus increased P retention. In addition, the release of previously retained P was limited in filters with non-equilibrium transport (<2 %) compared to the other filters (>5 %). The results demonstrated that intragranular diffusion was an important mechanism increasing P retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

P:

Phosphorus

CFH:

Ferric hydroxide granules

CDE:

Calcined diatomite earth

ADW:

Artificial agricultural drainage water

References

  • Adam, K., Sovik, A. K., & Krogstad, T. (2006). Sorption of phosphorous to Filtralite-P (TM) - The effect of different scales. Water Resources, 40(6), 1143–1154. doi:10.1016/j.watres.2006.01.009.

    CAS  Google Scholar 

  • Andersen, H. E., Larsen, S. E., Kronvang, B., Hansen, K. M., Laubel, A., Windolf, J., & Muus, K. (2006). Fosfat i drænvand. Vand og Jord, 13(4), 152–156 (In Danish).

    Google Scholar 

  • Atkinson, A. C. (1994). Transforming both sides of a tree. The American Statistician, 48(4), 307–313. doi:10.2307/2684841.

    Google Scholar 

  • Axe, L., & Trivedi, P. (2002). Intraparticle surface diffusion of metal contaminants and their attenuation in microporous amorphous Al, Fe, and Mn oxides. Journal of Colloid and Interface Science, 247(2), 259–265. doi:10.1006/jcis.2001.8125.

    Article  CAS  Google Scholar 

  • Barrow, N. J. (1983). A mechanistic model for describing the sorption and desorption of phosphate by soil. Journal of Soil Science, 34(4), 733–750.

    Article  CAS  Google Scholar 

  • Barrow, N. J. (2008). The description of sorption curves. European Journal of Soil Science, 59(5), 900–910. doi:10.1111/j.1365-2389.2008.01041.x.

    Article  Google Scholar 

  • Bolan, N. S., Barrow, N. J., & Posner, A. M. (1985). Describing the effect of time on sorption of phosphate by iron and aluminium hydroxides. Journal of Soil Science, 36(2), 187–197. doi:10.1111/j.1365-2389.1985.tb00323.x.

    Article  CAS  Google Scholar 

  • Brusseau, M. L. (1994). Transport of reactive contaminants in heterogeneous porous media. Reviews of Geophysics, 32(3), 285–313.

    Article  Google Scholar 

  • Canga, E., Iversen, B. V., & Kjaergaard, C. (2014). A simplified transfer function for estimating saturated hydraulic conductivity of porous drainage filters. Water, Air, and Soil Pollution, 225(1), 1–13. doi:10.1005/s11270-013-1794-8.

    Article  CAS  Google Scholar 

  • Canga, E., Kjaergaard, C., Iversen B.V., & Heckrath, G.J. (2016). Agricultural drainage filters. I. Filter hydro-physical properties and tracer transport. Water Air and Soil Pollution, (in review).

  • Chardon, W. J., Groenenberg, J. E., Temminghoff, E. J. M., & Koopmans, G. F. (2012). Use of reactive materials to bind phosphorus. Journal of Environmental Quality, 41(3), 636–646. doi:10.2134/jeq2011.0055.

    Article  CAS  Google Scholar 

  • Claveau-Mallet, D., Wallace, S., & Comeau, Y. (2013). Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Resources, 47(4), 1512–1520. doi:10.1016/j.watres.2012.11.048.

    CAS  Google Scholar 

  • Diaz, J., Ingall, E., Benitez-Nelson, C., Paterson, D., de Jonge, M. D., McNulty, I., et al. (2008). Marine polyphosphate: A key player in geologic phosphorus sequestration. Science, 320(5876), 652–655. doi:10.1126/science.1151751.

    Article  CAS  Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: hydrous ferric oxide. New York: John Wiley & Sons.

    Google Scholar 

  • Eastman, M., Gollamudi, A., Stämpfli, N., Madramootoo, C. A., & Sarangi, A. (2010). Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada. Agricultural Water Management, 97(5), 596–604. doi:10.1016/j.agwat.2009.11.010.

    Article  Google Scholar 

  • Egemose, S., Sonderup, M. J., Beinthin, M. V., Reitzel, K., Hoffmann, C. C., & Flindt, M. R. (2012). Crushed concrete as a phosphate binding material: a potential new management tool. Journal of Environmental Quality, 41(3), 647–653. doi:10.2134/jeq2011.0134.

    Article  CAS  Google Scholar 

  • Eveborn, D., Gustafsson, J. P., Hesterberg, D., & Hillier, S. (2009). XANES Speciation of P in environmental samples: An assessment of filter media for on-site wastewater treatment. Environmental Science and Technology, 43(17), 6515–6521. doi:10.1021/es901084z.

    Article  CAS  Google Scholar 

  • Fesch, C., Simon, W., Haderlein, S. B., Reichert, P., & Schwarzenbach, R. P. (1998). Nonlinear sorption and nonequilibrium solute transport in aggregated porous media: Experiments, process identification and modeling. Journal of Contaminant Hydrology, 31(3), 373–407.

    Article  CAS  Google Scholar 

  • Ford, R. G., Scheinost, A. C., & Sparks, D. L. (2001). Frontiers in metal sorption/precipitation mechanisms on soil mineral surfaces. Advances in Agronomy, 74, 41–62.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Sposito, G. (1984). A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Science Society of America Journal, 48(4), 772–778.

    Article  CAS  Google Scholar 

  • Groenenberg, J. E., Chardon, W. J., & Koopmans, G. F. (2013). Reducing phosphorus loading of surface water using iron-coated sand. Journal of Environmental Quality, 42(1), 250–259. doi:10.2134/jeq2012.0344.

    Article  CAS  Google Scholar 

  • Hay, M. B., Stoliker, D. L., Davis, J. A., & Zachara, J. M. (2011). Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations. Water Resources Research, 47(10). doi:10.1029/2010WR010303

  • Heathwaite, A. L., & Dils, R. M. (2000). Characterising phosphorus loss in surface and subsurface hydrological pathways. Science of the Total Environment, 251, 523–538. doi:10.1016/S0048-9697(00)00393-4.

    Article  Google Scholar 

  • Heckrath, G., Brookes, P. C., Poulton, P. R., & Goulding, K. W. T. (1995). Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. Journal of Environmental Quality, 24(5), 904–910. doi:10.2134/jeq1995.00472425002400050018x.

    Article  CAS  Google Scholar 

  • Jenssen, P. D., Krogstad, T., Paruch, A. M., Mæhlum, T., Adam, K., Arias, C., et al. (2010). Filter bed systems treating domestic wastewater in the Nordic countries - Performance and reuse of filter media. Ecological Engineering, 36(12), 1651–1659. doi:10.1016/j.ecoleng.2010.07.004.

    Article  Google Scholar 

  • Johansson, L. (1997). The use of LECA (light expanded clay aggregrates) for the removal of phosphorus from wastewater. Water Science and Technology, 35(5), 87–93. doi:10.1016/S0273-1223(97)00056-5.

    Article  CAS  Google Scholar 

  • Kafkafi, U. (1972). Soil phosphorus. Analytical chemistry of phosphorus compounds (pp. 727–741). New York: Wiley & Sons.

    Google Scholar 

  • Kettl, S. (1991). Accounting for heteroscedasticity in the transform both sides regression model. Applied Statistics, 40(2), 261–268. doi:10.2307/2347591.

    Article  Google Scholar 

  • Kirkkala, T., Ventelä, A. M., & Tarvainen, M. (2012a). Fosfilt filters in an agricultural catchment: a long-term field-scale. Agricultural and Food Science, 21(3), 237–246.

    CAS  Google Scholar 

  • Kirkkala, T., Ventelä, A. M., & Tarvainen, M. (2012b). Long-term field-scale experiment on using lime filters in an agricultural catchment. Journal of Environmental Quality, 41(2), 410–419. doi:10.2134/jeq2010.0429.

    Article  CAS  Google Scholar 

  • Kleinman, P. J., Sharpley, A. N., McDowell, R. W., Flaten, D. N., Buda, A. R., & Tao, L. (2011). Managing agricultural phosphorus for water quality protection: principles for progress. Plant and Soil, 349, 169–182. doi:10.1007/s11104-011-0832-9.

    Article  CAS  Google Scholar 

  • Kleinman, P. J., Sharpley, A. N., Veith, T. L., Maguire, R. O., & Vadas, P. A. (2004). Evaluation of phosphorus transport in surface runoff from packed soil boxes. Journal of Environmental Quality, 33(4), 1413–1423.

    Article  CAS  Google Scholar 

  • Klimeski, A., Chardon, W. J., Turtola, E., & Uusitalo, R. (2012). Potential and limitations of phosphate retention media in water protection: A process-based review of laboratory and field-scale tests. Agricultural and Food Science, 21(3), 206–223.

    CAS  Google Scholar 

  • Kookana, R. S., Aylmore, L. A. G., & Gerritse, R. G. (1992). Time-dependent sorption of pesticides during transport in soils. Soil Science, 154(3), 214–225.

    Article  CAS  Google Scholar 

  • Kronvang, B., Rubæk, G. H., & Heckrath, G. (2009). International Phosphorus Workshop: Diffuse phosphorus loss to surface water bodies—Risk assessment, mitigation options, and ecological effects in river basins. Journal of Environmental Quality, 38(5), 1924–1929. doi:10.2134/jeq2009.0051.

    Article  CAS  Google Scholar 

  • Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007). Sorption isotherms: a review on physical bases, modeling and measurement. Applied Geochemistry, 22(2), 249–275. doi:10.1016/j.apgeochem.2006.09.010.

    Article  CAS  Google Scholar 

  • Lyngsie, G., Borggaard, O. K., & Hansen, H. C. B. (2014a). A three-step test of phosphate sorption efficiency of potential agricultural drainage filter materials. Water Research, 51, 256–265.

    Article  CAS  Google Scholar 

  • Lyngsie, G., Penn, C. J., Hansen, H. C., & Borggaard, O. K. (2014b). Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry. Journal of Environmental Management, 143, 26–33.

    Article  CAS  Google Scholar 

  • Makris, K. C., El-Shall, H., Harris, W. G., O’Connor, G. A., & Obreza, T. A. (2004). Intraparticle phosphorus diffusion in a drinking water treatment residual at room temperature. Journal of Colloid and Interface Science, 277(2), 417–423. doi:10.1016/j.jcis.2004.05.001.

    Article  CAS  Google Scholar 

  • McDowell, R. W. (2008). Phosphorus in humped and hollowed soils of the Inchbonnie catchment, West Coast, New Zealand: II. Accounting for losses by different pathways. New Zealand Journal of Agricultural Research, 51(3), 307–316. doi:10.1080/00288230809510462.

    Article  CAS  Google Scholar 

  • McDowell, R. W., & Sharpley, A. N. (2001). Phosphorus losses in subsurface flow before and after manure application to intensively farmed land. Science of the Total Environment, 278(1), 113–125. doi:10.1016/S0048-9697(00)00891-3.

    Article  CAS  Google Scholar 

  • Murphy, J. A. M. E. S., & Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nooney, M. G., Campbell, A., Murrell, T. S., Lin, X. F., Hossner, L. R., Chusuei, C. C., & Goodman, D. W. (1998). Nucleation and growth of phosphate on metal oxide thin films. Langmuir, 14(10), 2750–2755. doi:10.1021/la9702695.

    Article  CAS  Google Scholar 

  • Parfitt, P. L. (1978). Anion adsorption by soils and soil materials. Advances in Agronomy, 30, 1–50.

    Article  CAS  Google Scholar 

  • Penn, C. J., Bryant, R. B., Kleinman, P. J., & Allen, A. L. (2007). Removing dissolved phosphorus from drainage ditch water with phosphorus sorbing materials. Journal of Soil and Water Conservation, 62(4), 269–276.

    Google Scholar 

  • Penn, C. J., & McGrath, J. M. (2011). Predicting phosphorus sorption onto steel slag using a flow-through approach with application to a pilot scale system. Journal of Water Resource and Protection, 3(4), 235.

    Article  CAS  Google Scholar 

  • Penn, C. J., McGrath, J. M., Rounds, E., Fox, G., & Heeren, D. (2012). Trapping phosphorus in runoff with a phosphorus removal structure. Journal of Environmental Quality, 41(3), 672–679.

    Article  CAS  Google Scholar 

  • Pote, D. H., Daniel, T. C., Nichols, D., Sharpley, A. N., Moore, P. A., Miller, D. M., & Edwards, D. R. (1999). Relationship between phosphorus levels in three Ultisols and phosphorus concentrations in runoff. Journal of Environmental Quality, 28(1), 170–175. doi:10.2134/jeq1999.00472425002800010020x.

    Article  CAS  Google Scholar 

  • Rao, P. S. C., Rolston, D. E., Jessup, R. E., & Davidson, J. M. (1980). Solute transport in aggregated porous media: Theoretical and experimental evaluation. Soil Science Society of America Journal, 44(6), 1139–1146.

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2008). SAS/STAT® 9.2. User’s Guide. Cary: SAS Institute Inc.

    Google Scholar 

  • Schoumans, O. F., Chardon, W. J., Bechmann, M. E., Gascuel-Odoux, C., Hofman, G., Kronvang, B., et al. (2014). Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: A review. Science of the Total Environment, 468, 1255–1266. doi:10.1016/j.scitotenv.2013.08.061.

    Article  Google Scholar 

  • Sharpley, A. N. (1995). Dependence of runoff phosphorus on extractable soil phosphorus. Journal of Environmental Quality, 24(5), 920–926.

    Article  CAS  Google Scholar 

  • Sims, J. T., Simard, R. R., & Joern, B. C. (1998). Phosphorus loss in agricultural drainage: Historical perspective and current research. Journal of Environmental Quality, 27(2), 277–293.

    Article  CAS  Google Scholar 

  • Sposito, G. (1980). Derivation of the Freundlich equation for ion exchange reactions in soils. Soil Science Society of America Journal, 44(3), 652–654. doi:10.2136/sssaj1980.03615995004400030045x.

    Article  CAS  Google Scholar 

  • Suzuki, T., Inomata, S., & Sawada, K. (1986). Adsorption of phosphate on calcite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82(6), 1733–1743. doi:10.1039/F19868201733.

    Article  CAS  Google Scholar 

  • Sø, H. U., Postma, D., Jakobsen, R., & Larsen, F. (2011). Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochimica et Cosmochimica Acta, 75(10), 2911–2923. doi:10.1016/j.gca.2011.02.031.

    Article  Google Scholar 

  • Søndergaard, M., Jeppesen, E., Peder Jensen, J., & Lildal Amsinck, S. (2005). Water Framework Directive: ecological classification of Danish lakes. Journal of Applied Ecology, 42, 616–629. doi:10.1111/j.1365-2664.2005.01040.x.

    Article  Google Scholar 

  • Vadas, P. A., Good, L. W., Moore, P. A., & Widman, N. (2009). Estimating phosphorus loss in runoff from manure and fertilizer for a phosphorus loss quantification tool. Journal of Environmental Quality, 38(4), 1645–1653. doi:10.2134/jeq2008.0337.

    Article  CAS  Google Scholar 

  • Van Genuchten, M. T., Wierenga, P. J., & O’connor, G. A. (1977). Mass transfer studies in sorbing porous media: III. Experimental evaluation with 2, 4, 5-T. Soil Science Society of America Journal, 41(2), 278–285. doi:10.2136/sssaj1977.03615995004100020023x.

    Article  Google Scholar 

  • Van Riemsdijk, W. H., Boumans, L. J. M., & De Haan, F. A. M. (1984). Phosphate sorption by soils: I. A model for phosphate reaction with metal-oxides in soil. Soil Science Society of America Journal, 48(3), 537–541.

    Article  Google Scholar 

  • Van Riemsdijk, W. H., & Lyklema, J. (1980). The reaction of phosphate with aluminum hydroxide in relation with phosphate bonding in soils. Colloids and Surfaces, 1(1), 33–44. doi:10.1016/0166-6622(80)80036-9.

    Article  Google Scholar 

  • Veith, J. A., & Sposito, G. (1977). On the use of the Langmuir equation in the interpretation of “adsorption” phenomena. Soil Science Society of America Journal, 41(4), 697–702. doi:10.2136/sssaj1977.03615995004100040015x.

    Article  CAS  Google Scholar 

  • Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecological Engineering, 37(1), 70–89. doi:10.1016/j.ecoleng.2009.08.003.

    Article  Google Scholar 

  • Westholm, L. J. (2006). Substrates for phosphorus removal—Potential benefits for on-site wastewater treatment? Water Research, 40(1), 23–36.

    Article  Google Scholar 

  • Willett, I. R., Chartres, C. J., & Nguyen, T. T. (1988). Migration of phosphate into aggregated particles of ferrihydrite. Journal of Soil Science, 39(2), 275–282. doi:10.1111/j.1365-2389.1988.tb01214.x.

    Article  CAS  Google Scholar 

  • Wood, W. W., Kraemer, T. F., & Hearn, P. P. (1990). Intragranular diffusion: An important mechanism influencing solute transport in clastic aquifers? Science, 247(4950), 1569–1572. doi:10.1126/science.247.4950.1569.

    Article  CAS  Google Scholar 

  • Wu, T., & Sansalone, J. (2013). Phosphorus equilibrium. I: Impact of AlOx media substrates and aqueous matrices. Journal of Environmental Engineering, 139(11), 1315–1324.

    Article  CAS  Google Scholar 

  • Yagi, S., & Fukushi, K. (2012). Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite. Journal of Colloid and Interface Science, 384(1), 128–136. doi:10.1016/j.jcis.2012.06.063.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research study was part of the project “Sustainable Phosphorus Removal and Recycle Technologies” (Supreme-Tech, www.supremetech.dk) funded by Danish Strategic Research Council, grant number 09-067280. We thank Lene Skovmose Andersen and Michael Koppelgaard for their technical assistance in laboratory during construction of the column setup and Kristian Kristensen for his suggestions on statistical issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriona Canga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canga, E., Heckrath, G.J. & Kjaergaard, C. Agricultural Drainage Filters. II. Phosphorus Retention and Release at Different Flow Rates. Water Air Soil Pollut 227, 276 (2016). https://doi.org/10.1007/s11270-016-2963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2963-3

Keywords

Navigation