Skip to main content
Log in

Determination of Mercury in Environmental Samples by Using Water Exchangeable Liquid-Liquid Microextraction as Green Extraction Method Couple with Cold Vapor Technique

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This is a green method for determination of mercury ion (Hg2+) in environmental samples. The method of exchangeable water based on liquid-liquid microextraction (EW-LLME) was first time introduced as a green analytical separation technique. Exchangeable water was made by the reaction of carbon dioxide with diethylenetriamine. The exchanging phenomena from low polarity to high polarity were confirmed by Fourier transforms infrared spectrometry. The complex formation between Hg2+ and 1, 5-diphenylcarbazone was achieved under the optimized experimental conditions. The enrichment factor and limits of detection of the present method were obtained to be 45.2 and 0.5 ng L−1, respectively. The accuracy of the present method was confirmed with certified reference materials. The EW-LLME was successfully applied for determination of Hg2+ in solid matrices of block-III and V of Thar coalfield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afkhami, A., Madrakian, T., & Siampour, H. (2006). Highly selective determination of trace quantities of mercury in water samples after preconcentration by the cloud-point extraction method. International Journal of Environmental and Analytical Chemistry, 86(15), 1165–1173.

    Article  CAS  Google Scholar 

  • Ahmad, S., & Chaudhry, M. (2007). Geochemical characterization and origin of the Karai-gabbro from the Neoproterozoic Nagarparker complex, Pakistan. Geol Bull Punjab Univ, 42, 1–14.

    Google Scholar 

  • Ali, J., Kazi, T. G., Baig, J. A., Afridi, H. I., Arain, M. S., Brahman, K. D., & Panhwar, A. H. (2015a). Arsenic in coal of the Thar coalfield, Pakistan, and its behavior during combustion. Environmental Science and Pollution Research, 22(11), 8559–8566.

    Article  CAS  Google Scholar 

  • Ali, J., Kazi, T. G., Baig, J. A., Afridi, H. I., Arain, M. S., Ullah, N., Arain, S. S., & Siraj, S. (2015b). Monitoring of arsenic fate with proximate parameters and elemental composition of coal from Thar coalfield, Pakistan. Journal of Geochemical Exploration, 159, 227–233.

    Article  CAS  Google Scholar 

  • Ali, J., Kazi, T. G., Baig, J. A., Afridi, H. I., Arain, M. S., Ullah, N., Brahman, K. D., Arain, S. S., & Panhwar, A. H. (2015c). Evaluation of the fate of arsenic-contaminated groundwater at different aquifers of Thar coalfield, Pakistan. Environmental Science and Pollution Research, 22(23), 19251–19263.

    Article  CAS  Google Scholar 

  • Ali, J., Kazi, T. G., Afridi, H. I., Baig, J. A., Arain, M. S., & Farooq, S. (2016). The evaluation of sequentially extracted mercury fractions in Thar coal samples by using different extraction schemes. International Journal of Coal Geology, 156, 50–58.

    Article  CAS  Google Scholar 

  • Álvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., & Vázquez, E. (2008). Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal combustion fly ashes. Journal of Hazardous Materials, 154(1), 175–183.

    Article  Google Scholar 

  • Arain, M. S., Kazi, T. G., Afridi, H. I., Arain, S. A., Ali, J., Arain, S. S., Panhwar, A. H., & Shanker, B. (2014). Preconcentration and determination of manganese in biological samples by dual-cloud point extraction coupled with flame atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 29(12), 2349–2355.

    Article  CAS  Google Scholar 

  • Arain, M. S., Arain, S. A., Kazi, T. G., Afridi, H. I., Ali, J., Arain, S. S., Brahman, K. D., & Mughal, M. A. (2015). Temperature controlled ionic liquid-based dispersive micro-extraction using two ligands, for determination of aluminium in scalp hair samples of Alzheimer’s patients: A multivariate study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 877–885.

    Article  CAS  Google Scholar 

  • Armenta, S., Garrigues, S., & Guardia, M. (2008). Green analytical chemistry. Trac Trends in Analytical Chemistry, 27(6), 497–511.

    Article  CAS  Google Scholar 

  • Beach, E. S., Cui, Z., & Anastas, P. T. (2009). Green Chemistry: a design framework for sustainability. Energy & Environmental Science, 2(10), 1038–1049.

    Article  CAS  Google Scholar 

  • Cunha, R. C., Patrício, P. R., Vargas, S. J. R., da Silva, L. H. M., & da Silva, M. C. H. (2016). Green recovery of mercury from domestic and industrial waste. Journal of Hazardous Materials, 304, 417–424.

    Article  Google Scholar 

  • Dadfarnia, S., Salmanzadeh, A. M., Haji, S., & Ali, M. (2002). Prenconcentration and determination of mercury (II) and methylmercury in waters by immobilized 1, 5-diphenylcarbazone and cold vapor atomic absorption spectrometry. Bulletin of the Korean Chemical Society, 23(12), 1719–1723.

    Article  CAS  Google Scholar 

  • Demirel, S., Tuzen, M., Saracoglu, S., & Soylak, M. (2008). Evaluation of various digestion procedures for trace element contents of some food materials. Journal of Hazardous Materials, 152(3), 1020–1026.

    Article  CAS  Google Scholar 

  • Dutta, S., Mathews, R. P., Singh, B. D., Tripathi, S. M., Singh, A., Saraswati, P. K., Banerjee, S., & Mann, U. (2011). Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential. International Journal of Coal Geology, 85(1), 91–102.

    Article  CAS  Google Scholar 

  • Flores, É. M., Welz, B., & Curtius, A. J. (2001). Determination of mercury in mineral coal using cold vapor generation directly from slurries, trapping in a graphite tube, and electrothermal atomization. Spectrochimica Acta Part B: Atomic Spectroscopy, 56(9), 1605–1614.

    Article  Google Scholar 

  • Fontas, C., Hidalgo, M., Salvadó, V., & Antico, E. (2005). Selective recovery and preconcentration of mercury with a benzoylthiourea-solid supported liquid membrane system. Analytica Chimica Acta, 547(2), 255–261.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Reza Fathi, M., Shokrollahi, A., & Shajarat, F. (2006). Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy. Analytical Letters, 39(6), 1171–1185.

    Article  CAS  Google Scholar 

  • Guo, H., Zhou, Z., & Jing, G. (2013). Kinetics of carbon dioxide absorption into aqueous [Hmim][Gly] solution. International Journal of Greenhouse Gas Control, 16, 197–205.

    Article  CAS  Google Scholar 

  • Hakim, L., Sabarudin, A., Oshima, M., & Motomizu, S. (2007). Synthesis of novel chitosan resin derivatized with serine diacetic acid moiety and its application to on-line collection/concentration of trace elements and their determination using inductively coupled plasma-atomic emission spectrometry. Analytica Chimica Acta, 588(1), 73–81.

    Article  CAS  Google Scholar 

  • Han, F. X., Su, Y., Monts, D. L., Waggoner, C. A., & Plodinec, M. J. (2006). Binding distribution and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Science of the Total Environment, 368(2), 753–768.

    Article  CAS  Google Scholar 

  • Heldebrant, D. J., Yonker, C. R., Jessop, P. G., & Phan, L. (2008). Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy & Environmental Science, 1(4), 487–493.

    CAS  Google Scholar 

  • Imran, M., Kumar, D., Kumar, N., Qayyum, A., Saeed, A., & Bhatti, M. S. (2014). Environmental concerns of underground coal gasification. Renewable and Sustainable Energy Reviews, 31, 600–610.

    Article  CAS  Google Scholar 

  • Jessop, P. G., & Subramaniam, B. (2007). Gas-expanded liquids. Chemical Reviews, 107(6), 2666–2694.

    Article  CAS  Google Scholar 

  • Jiménez-González, C., Poechlauer, P., Broxterman, Q. B., Yang, B.-S., Am Ende, D., Baird, J., Bertsch, C., Hannah, R. E., Dell’Orco, P., & Noorman, H. (2011). Key green engineering research areas for sustainable manufacturing: A perspective from pharmaceutical and fine chemicals manufacturers. Organic Process Research & Development, 15(4), 900–911.

    Article  Google Scholar 

  • Kilaru, P. K., & Scovazzo, P. (2008). Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium phosphonium and ammonium based room temperature ionic liquids. Part 2. Using activation energy of viscosity. Industrial & Engineering Chemistry Research, 47(3), 910–919.

    Article  CAS  Google Scholar 

  • Kirchner, B., Stubbs, J., & Marx, D. (2002). Fast anomalous diffusion of small hydrophobic species in water. Physical Review Letters, 89(21), 215901.

    Article  Google Scholar 

  • Knöfel, C., Martin, C., Hornebecq, V., & Llewellyn, P. L. (2009). Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. The Journal of Physical Chemistry, 113(52), 21726–21734.

    Google Scholar 

  • Lestari, G., Abolhasani, M., Bennett, D., Chase, P., Günther, A., & Kumacheva, E. (2014). Switchable water: microfluidic investigation of liquid–liquid phase separation mediated by carbon dioxide. Journal of the American Chemical Society, 136(34), 11972–11979.

    Article  CAS  Google Scholar 

  • Li, Z., Xia, S., Wang, J., Bian, C., & Tong, J. (2016). Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry. Journal of Hazardous Materials, 301, 206–213.

    Article  CAS  Google Scholar 

  • López-Antón, M. A., Díaz-Somoano, M., Ochoa-González, R., & Martínez-Tarazona, M. R. (2012). Analytical methods for mercury analysis in coal and coal combustion byproducts. International Journal of Coal Geology, 94, 44–53.

    Article  Google Scholar 

  • Lv, B., Guo, B., Zhou, Z., & Jing, G. (2015). Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes. Environmental Science & Technology, 49(17), 10728–10735.

    Article  CAS  Google Scholar 

  • Machnikowska, H., Krztoń, A., & Machnikowski, J. (2002). The characterization of coal macerals by diffuse reflectance infrared spectroscopy. Fuel, 81(2), 245–252.

    Article  CAS  Google Scholar 

  • Mahpishanian, S., & Shemirani, F. (2010). Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry. Talanta, 82(2), 471–476.

    Article  CAS  Google Scholar 

  • Malkani, M. S. (2012). A review of coal and water resources of Pakistan. Journal of Science, Technology and Development, 31(3), 202–218.

    Google Scholar 

  • Mercer, S. M., & Jessop, P. G. (2010). Switchable water: Aqueous solutions of switchable ionic strength. ChemSusChem, 3(4), 467–470.

    Article  CAS  Google Scholar 

  • Mercer, S. M., Robert, T., Dixon, D. V., Chen, C. S., Ghoshouni, Z., Harjani, J. R., Jahangiri, S., Peslherbe, G. H., & Jessop, P. G. (2012). Design, synthesis, and solution behaviour of small polyamines as switchable water additives. Green Chemistry, 14(3), 832–839.

    Article  CAS  Google Scholar 

  • Monalisa, K. A., & Jan, M. Q. (2007). Seismic hazard assessment of the NW Himalayan fold and thrust belt, Pakistan, using probabilistic approach. Journal of Earthquake Engineering, 11(2), 257–301.

    Article  Google Scholar 

  • Naseem, S., Rafique, T., Bashir, E., Bhanger, M. I., Laghari, A., & Usmani, T. H. (2010). Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere, 78(11), 1313–1321.

    Article  CAS  Google Scholar 

  • Naseri, M. T., Hemmatkhah, P., Hosseini, M. R. M., & Assadi, Y. (2008). Combination of dispersive liquid–liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples. Analytica Chimica Acta, 610(1), 135–141.

    Article  CAS  Google Scholar 

  • Phan, L., Brown, H., White, J., Hodgson, A., & Jessop, P. G. (2009). Soybean oil extraction and separation using switchable or expanded solvents. Green Chemistry, 11(1), 53–59.

    Article  CAS  Google Scholar 

  • Rofouei, M. K., Hosseini, S. M., Khani, H., & Rahimi-Alangi, S. (2012). Highly selective determination of trace quantities of Hg (ii) in water samples by spectrophotometric and inductively coupled plasma-optical emission spectrometry methods after cloud point extraction. Analytical Methods, 4(3), 759–765.

    Article  CAS  Google Scholar 

  • Shah, A., Kazi, T., Baig, J., Afridi, H., Kandhro, G., Arain, M., Kolachi, N., & Wadhwa, S. (2010). Total mercury determination in different tissues of broiler chicken by using cloud point extraction and cold vapor atomic absorption spectrometry. Food and Chemical Toxicology, 48(1), 65–69.

    Article  CAS  Google Scholar 

  • Singhvi, A., & Kar, A. (2004). The aeolian sedimentation record of the Thar Desert. Journal of Earth System Science, 113(3), 371–401.

    Article  Google Scholar 

  • Smith, R. M. (2006). Superheated water: the ultimate green solvent for separation science. Analytical and Bioanalytical Chemistry, 385(3), 419–421.

    Article  CAS  Google Scholar 

  • Su, X., Cunningham, M. F., & Jessop, P. G. (2014). Use of a switchable hydrophobic associative polymer to create an aqueous solution of CO2 switchable viscosity. Polymer Chemistry, 5(3), 940–944.

    Article  CAS  Google Scholar 

  • Sun, J., Li, S. H., Han, P., & Chen, Y. (2006). Holocene environmental changes in the central Inner Mongolia, based on single aliquot quartz optical dating and multi-proxy study of dune sands. Palaeogeography Palaeoclimatology Palaeoecology, 233(1), 51–62.

    Article  Google Scholar 

  • Sun, H., Zhou, X. Q., Xue, Z., Zhou, Z. Y., & Mu, T. (2014). Theoretical investigations on the reaction mechanisms of amine-functionalized ionic liquid [aEMMIM][BF 4] and CO2. International Journal of Greenhouse Gas Control, 20, 43–48.

    Article  CAS  Google Scholar 

  • Yu, J., Le, Y., & Cheng, B. (2012). Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Advances, 2(17), 6784–6791.

    Article  CAS  Google Scholar 

  • Zhang, C., Huang, K., Yu, P., & Liu, H. (2011). Salting-out induced three liquid phase separation of Pt (IV), Pd (II) and Rh (III) in system of S201 acetonitrile NaCl water. Separation and Purification Technology, 80(1), 81–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jamshed Ali is grateful to the Scientific and Technological Research Council of Turkey TUBITAK-BIDEB 2216 Research Fellowship Programme for International Researchers for providing financial support. The authors also would like to thank to Gaziosmanpasa, University. Dr. Mustafa Tuzen thanks theTurkish Academy of Sciences for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tuzen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, J., Tuzen, M. & Kazi, T.G. Determination of Mercury in Environmental Samples by Using Water Exchangeable Liquid-Liquid Microextraction as Green Extraction Method Couple with Cold Vapor Technique. Water Air Soil Pollut 227, 170 (2016). https://doi.org/10.1007/s11270-016-2863-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2863-6

Keywords

Navigation