Skip to main content
Log in

Influence of Soil Pore Length upon Portable X-ray Fluorescence Spectrometer Measurements of Elements in Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

To approximate the measurement accuracy of laborious lab approaches, soil inventories using field portable XRF (pXRF) spectrometers should take distorting parameters into account. Besides soil moisture, the length of water-filled soil pores may also affect X-ray intensity. Following the Arya-Paris approach of soil pore bundles, soil pore lengths were calculated for 20 riparian soil samples based on effective pore diameters obtained at specified pressure heads of the water retention curve. When contrasted against pXRF signals of lead, zirconium, and potassium, soil pore length information showed an explanation comparable to soil moisture values. Presumably, the bases and walls of soil pores are successively exposed to the excitation source during dewatering. Though its laborious determination, soil pore length calculation is based on comparatively static parameters, which may circumvent adverse effects occurring at moisture determination at steel-ring samples, such as artificial macropores in the course of sampling and transport or shrinkage of porosity due to pressure application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ad-hoc-AG Boden (2005). Bodenkundliche Kartieranleitung (5th edn). Stuttgart: Schweitzerbart’sche Verlagsbuchhandlung. 438 pp.

  • Alloway, B. G. (1995). Heavy metals in soils. London: Chapman and Hall. 365 pp.

  • Arya, L. M., & Paris, J. F. (1981). A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Society of America Journal, 45, 1023–1030.

    Article  Google Scholar 

  • Arya, L. M., Leij, F. J., van Genuchten, M. T., & Shouse, P. J. (1999). Scaling parameter to predict the soil water characteristic from particle-size distribution data. Soil Science Society of America Journal, 63, 510–519.

    Article  CAS  Google Scholar 

  • Bagarello, V., & Provenzano, G. (1996). Factors affecting field and laboratory measurement of saturated hydraulic conductivity. Transactions of the ASAE, 39, 153–159.

    Article  Google Scholar 

  • Bastos, R. O., Melquiades, F. L., & Biasi, G. E. V. (2012). Correction for the effect of soil moisture on in situ XRF analysis using low-energy background. X-Ray Spectrometry, 41, 304–307.

    Article  CAS  Google Scholar 

  • Berger, M., Zou, L., & Schleicher, R. (2009). Analysis of sulfur in the Copper Basin and Muddy River sites. International Journal of Soil, Sediment and Water, 2, 3(Article 1), 18.

    Google Scholar 

  • Blume, HP, Brümmer, GW, Horn, R, Kandeler, E, Kögel-Knabner, I, Kretzschmar, R, Stahr, K, Wilke, BM (2010). Scheffer/Schachtschabel - Lehrbuch der Bodenkunde. Heidelberg: Spektrum-Springer. 570 pp.

  • Fallico, C., Migliari, E., & Troisi, S. (2005). Characterization of the field saturated hydraulic conductivity on a hillslope: measurement techniques, data sensitivity analysis and spatial correlation modelling. Hydrol. Earth Sys. Sci. Discuss., 2, 1247–1298.

    Article  Google Scholar 

  • Fitzpatrick, R. W., & Chittleborough, D. J. (2002). Titanium and zirconium minerals. In J. B. Dixon & D. G. Schulze (Eds.), Soil mineralogy with environmental applications (pp. 667–690). Madison, Wisconsin, USA: Soil Science Society of America Inc.

    Google Scholar 

  • Gantzer, C. J., & Anderson, S. H. (2002). Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds. Soil & Tillage Research, 64, 101–111.

    Article  Google Scholar 

  • Ge, L., Lai, W., & Lin, Y. (2005). Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis. X-Ray Spectrometry, 34, 28–34.

    Article  CAS  Google Scholar 

  • Hayashi, H., Watanabe, N., Udagawa, Y., & Kao, C. C. (2000). The complete optical spectrum of liquid water measured by inelastic x-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 97, 6264–6266.

    Article  CAS  Google Scholar 

  • Horta, A., Malone, B., Stockmann, U., Minasny, B., Bishop, T. F. A., McBratney, A. B., Pallasser, R., & Pozza, L. (2015). Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma, 241, 180–209.

    Article  Google Scholar 

  • Hürkamp, K., Raab, T., & Völkel, J. (2009). Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (PXRF) analysis. Geomorphology, 110, 28–36.

    Article  Google Scholar 

  • Inokuti, M. (1991). How is radiation energy absorption different between the condensed phase and the gas phase? Radiation Effects and Defects in Solids, 117, 1–3.

    Article  Google Scholar 

  • Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83, 93–122.

    Article  CAS  Google Scholar 

  • Lemiere, B., Laperche, V., Haouche, L., & Auger, P. (2014). Portable XRF and wet materials: application to dredged contaminated sediments from waterways. Geochemistry: Exploration, Environment, Analysis, 14, 257–264.

    CAS  Google Scholar 

  • Nielsen, B. D. (2004). Non-destructive soil testing using X-ray computed tomography. Msc. Thesis. Bozeman: Montana State University. 137 pp.

    Google Scholar 

  • Nimmo, J. R. (2004). Porosity and pore size distribution. In D. Hillel (Ed.), Encyclopedia of soils in the environment 3 (pp. 295–303). London: Elsevier.

    Google Scholar 

  • Raab, T. (2005). (in German) Erfassung und Bewertung von Landschaftswandel in (prä)historischen Montangebieten am Beispiel Ostbayern. Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, 7, 236.

    Google Scholar 

  • Rogasik, H., Onasch, I., Brunotte, J., Jegou, D., & Wendroth, U. (2003). Assessment of soil structure using X-ray computed tomography. In F. Mees, R. Swennen, M. Van Geet, & P. Jacobs (Eds.), Applications of X-ray computed tomography in the geosciences (215th ed., pp. 151–165). Geological Society, London: Special Publications.

    Google Scholar 

  • Schindler, U., Dörner, J., & Müller, L. (2015). Simplified method for quantifying the hydraulic properties of shrinking soils. Journal of Plant Nutrition and Soil Science, 178, 136–145.

    Article  CAS  Google Scholar 

  • Shuttleworth, E. L., Evans, M. G., Hutchinson, S. M., & Rothwell, J. J. (2014). Assessment of lead contamination in peatlands using field portable XRF. Water, Air, and Soil Pollution, 22, 1–13.

    Google Scholar 

  • Taina, I. A., Heck, R. J., & Elliot, T. R. (2008). Application of X-ray computed tomography to soil science: a literature review. Canadian Journal of Soil Science, 88, 1–20.

    Article  Google Scholar 

  • US EPA (2007). Field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. URL https://www.epa.gov/sites/production/files/2015-12/documents/6200.pdf (access on 4 April 2016).

  • US EPA/ERT. (1991). Field portable X-ray fluorescence. Quality Assurance Technical Information Bulletin, 1 (no. 4).

  • Weindorf, D. C., Bakr, N., Zhu, Y., McWhirt, A., Ping, C. L., Michaelson, G., Nelson, C., Shook, K., & Nuss, S. (2014). Influence of ice on soil elemental characterization via portable X-ray fluorescence spectrometry. Pedosphere, 24, 1–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the European Union and the Bavarian Ministry of Environmental and Consumer Protection under grant 324 of the European Regional Development Fund “Bavaria – Czech Republic.” The authors thank Silke Arlt and Dominik Bogner, Dep. Of Supervision of Waste Streams of the Bavarian Environment Agency, who provided their FP-XRF device. Extensive soil analyses conducted by the staff of the Bavarian Environment Agency’s soil physics lab are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edzard Hangen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hangen, E., Vieten, F. Influence of Soil Pore Length upon Portable X-ray Fluorescence Spectrometer Measurements of Elements in Soils. Water Air Soil Pollut 227, 143 (2016). https://doi.org/10.1007/s11270-016-2844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2844-9

Keywords

Navigation