Skip to main content
Log in

Selective Copper Bioleaching by Pure and Mixed Cultures of Alkaliphilic Bacteria Isolated from a Fly Ash Landfill Site

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

With the gradual depletion of high-grade copper ore deposits, secondary wastes are gaining importance as a source for metal recovery. However, the alkalinity and low copper concentration in some of these resources underscore the need for selective leaching agents. In this work, indigenous alkaliphiles from a fly ash landfill site with inherent pH tolerance, metal tolerance and copper leaching capability were isolated and investigated. Four isolates, namely Agromyces aurantiacus TRTYP3, Alkalibacterium pelagium TRTYP5, Alkalibacterium sp. TRTYP6 and Bacillus foraminis TRTYP17, each selectively leached about 50 % copper from 1 % (w/v) of fly ash. Mixed culture of these bacteria resulted in higher leaching of copper. The optimal combination was TRTYP3, TRTYP5, TRTYP6 and TRTYP17 in the ratio 1:1:3:1, which leached 88, 81, 78, 76, 70 and 55 % Cu from 1, 2.5, 5, 10, 15 and 20 % (w/v) of fly ash. While Cu and Pb were bioleached into solution, Fe and Zn were precipitated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abboud, M. M., Khleifat, K. M., Batarseh, M., Tarawneh, K. A., Al-Mustafa, A., & Al-Madadhah, M. (2007). Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme and Microbial Technology, 41(4), 432–439.

    Article  CAS  Google Scholar 

  • Akcil, A., & Deveci, H. (2010). Mineral biotechnology of sulphides. In Geomicrobiology (pp. 101–137). New Hampshire: Science Publishers Enfield.

    Chapter  Google Scholar 

  • Akcil, A., Ciftci, H., & Deveci, H. (2007). Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Minerals Engineering, 20(3), 310–318.

    Article  CAS  Google Scholar 

  • Amiri, F., Yaghmaei, S., & Mousavi, S. M. (2011). Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. [Research Support, Non-U.S. Gov't]. Bioresource Technology, 102(2), 1567–1573. doi:10.1016/j.biortech.2010.08.087.

    Article  CAS  Google Scholar 

  • ASTM (2011). Test methods for determination of trace elements in coal, coke, & combustion residues from coal utilization processes by inductively coupled plasma atomic emission, inductively coupled plasma mass, & graphite furnace atomic absorption spectrometry. D6357-11. West Conshohocken: ASTM International.

  • Basu, M., Pande, M., Bhadoria, P., & Mahapatra, S. (2009). Potential fly-ash utilization in agriculture: a global review. Progress in Natural Science, 19(10), 1173–1186.

    Article  CAS  Google Scholar 

  • Brandl, H. (2008). Microbial leaching of metals. Biotechnology Set (2nd ed., pp. 191–224).

    Google Scholar 

  • Brierley, J., & Brierley, C. (2001). Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 59(2), 233–239.

    Article  CAS  Google Scholar 

  • Burgstaller, W., & Schinner, F. (1993). Leaching of metals with fungi. Journal of Biotechnology, 27(2), 91–116.

    Article  CAS  Google Scholar 

  • Da Silva, G., Lastra, M., & Budden, J. (2003). Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena. Minerals Engineering, 16(3), 199–203.

    Article  Google Scholar 

  • Deveci, H., Akcil, A., & Alp, I. (2004). Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy, 73(3), 293–303.

    Article  CAS  Google Scholar 

  • Diederen, A. (2009). Metal minerals scarcity: a call for managed austerity and the elements of hope. TNO Defence, Security and Safety.

    Google Scholar 

  • Dyer, J. A., Scrivner, N. C., & Dentel, S. K. (1998). A practical guide for determining the solubility of metal hydroxides and oxides in water. Environmental Progress, 17(1), 1–8.

    Article  CAS  Google Scholar 

  • Ehrlich, H. (2004). Beginnings of rational bioleaching and highlights in the development of biohydrometallurgy: a brief history. European Journal of Mineral Processing and Environmental Protection, 4(2), 102–112.

    Google Scholar 

  • Eydallin, G., Ryall, B., Maharjan, R., & Ferenci, T. (2013). The nature of laboratory domestication changes in freshly isolated Escherichia coli strains. Environmental Microbiology, 16(3), 813–828.

    Article  Google Scholar 

  • Falco, L., Pogliani, C., Curutchet, G., & Donati, E. (2003). A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy, 71(1), 31–36.

    Article  CAS  Google Scholar 

  • Farah, C., Vera, M., Morin, D., Haras, D., Jerez, C. A., & Guiliani, N. (2005). Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology, 71(11), 7033–7040.

    Article  CAS  Google Scholar 

  • Gimmler, H, & Degenhard, B (2001). Alkaliphilic and alkali-tolerant algae. In Algal adaptation to environmental stresses (pp. 291–321). Berlin Heidelberg: Springer.

  • Ilyas, S., Anwar, M. A., Niazi, S. B., & Afzal Ghauri, M. (2007). Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy, 88(1–4), 180–188.

    Article  CAS  Google Scholar 

  • Ishigaki, T., Nakanishi, A., Tateda, M., Ike, M., & Fujita, M. (2005). Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere, 60(8), 1087–1094.

    Article  CAS  Google Scholar 

  • Joanne, M., Linda, M., & Christopher, J. (2008). Prescott, Harley and Klein’s microbiology. New York: McGraw Hill.

    Google Scholar 

  • Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Reviews in Microbiology, 55(1), 165–199.

    Article  CAS  Google Scholar 

  • Mishra, D, & Rhee, Y-H (2010). Current research trends of microbiological leaching for metal recovery from industrial wastes. Current Research, Technology and Education topics in Applied Microbiology and Microbial Biotechnology, Badajoz, Spain: Formatex Research Center, (pp. 1289–1296).

  • Olson, G., Brierley, J., & Brierley, C. (2003). Bioleaching review part B. Applied Microbiology and Biotechnology, 63(3), 249–257.

    Article  CAS  Google Scholar 

  • Ramanathan, T., & Ting, Y. P. (2014). Fly ash and the use of bioleaching for fly ash detoxification. In Fly ash: chemical composition, sources and potential environmental impacts. NY: Nova publishers.

    Google Scholar 

  • Rawlings, D. E., & Kusano, T. (1994). Molecular genetics of Thiobacillus ferrooxidans. Microbiological Reviews, 58(1), 39–55.

    CAS  Google Scholar 

  • Rozycki, H., Strzelczyk, E., Raczkowska, E., & Li, C. (1992). Effect of different carbon and nitrogen sources and vitamins on growth of Azospirillum spp. isolated from coniferous ectomycorrhizae and sporocarps of ectomycorrhizal fungi. Acta Microbiologica Polonica, 41, 193–201.

    CAS  Google Scholar 

  • Ruiz, L. M., Valenzuela, S., Castro, M., Gonzalez, A., Frezza, M., Soulère, L., et al. (2008). AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency. Hydrometallurgy, 94(1), 133–137.

    Article  CAS  Google Scholar 

  • Ryznar-Luty, A., Krzywonos, M., Cibis, E., & Miskiewicz, T. (2008). Aerobic biodegradation of vinasse by a mixed culture of bacteria of the genus Bacillus: optimization of temperature, pH and oxygenation state. Polish Journal of Environmental Studies, 17(1), 101.

    CAS  Google Scholar 

  • Thipse, S. S., Schoenitz, M., & Dreizin, E. L. (2002). Morphology and composition of the fly ash particles produced in incineration of municipal solid waste. Fuel Processing Technology, 75(3), 173–184.

    Article  CAS  Google Scholar 

  • Tienungoon, S., Ratkowsky, D., McMeekin, T., & Ross, T. (2000). Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid. Applied and Environmental Microbiology, 66(11), 4979–4987.

    Article  CAS  Google Scholar 

  • Tinaz, G. B. (2003). Quorum sensing in gram-negative bacteria. Turkish Journal of Biology, 27(2), 85–93.

    Google Scholar 

  • Torres, F., Blazquez, M., Gonzalez, F., Ballester, A., & Mier, J. (1995). The bioleaching of different sulfide concentrates using thermophilic bacteria. Metallurgical and Materials transactions B, 26(3), 455–465.

    Article  Google Scholar 

  • White, C., Sayer, J., & Gadd, G. (1997). Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiology Reviews, 20(3–4), 503–516.

    Article  CAS  Google Scholar 

  • Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J., & Salmond, G. P. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews, 25(4), 365–404.

    Article  CAS  Google Scholar 

  • Wu, H.-Y., & Ting, Y.-P. (2006). Metal extraction from municipal solid waste (MSW) incinerator fly ash—chemical leaching and fungal bioleaching. Enzyme and Microbial Technology, 38(6), 839–847.

    Article  CAS  Google Scholar 

  • Xiang, Y., Wu, P., Zhu, N., Zhang, T., Liu, W., Wu, J., et al. (2010). Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of Hazardous Materials, 184(1–3).

  • Xu, T.-J., Ramanathan, T., & Ting, Y.-P. (2014). Bioleaching of incineration fly ash by Aspergillus niger—precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnology Reports, 3, 8–14.

    Article  Google Scholar 

  • Yang, Y (2013). Metal recovery from industrial solid waste—contribution to resource sustainability. REWAS 2013: Enabling Materials Resource Sustainability. (pp. 377–389).

  • Yang, J., Wang, Q., Wang, Q., & Wu, T. (2008). Comparisons of one-step and two-step bioleaching for heavy metals removed from municipal solid waste incineration fly ash. Environmental Engineering Science, 25(5), 783–789.

    Article  Google Scholar 

  • Yoshizawa, S, Tanaka, M, Shekdar, A (2004). Global trends in waste generation. Recycling, waste treatment and clean technology. Spain: TMS Mineral, Metals and Materials publishers, (pp. 1541–1552).

  • Zhang, H., Zheng, Y., Zeng, F., Zhu, Z., Wang, J. (2005). Resistance and adsorption of several bacterial strains to heavy metals. Microbiology, 3, 004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Peng Ting.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Highlights

1. Isolates from Agromyces, Alkalibacterium and Bacillus genera used for bioleaching

2. Selective recovery of ∼50 % copper achieved with pure cultures

3. Mixed culture of the isolates leached close to 90 % copper

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1705 kb)

ESM 2

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, T., Ting, YP. Selective Copper Bioleaching by Pure and Mixed Cultures of Alkaliphilic Bacteria Isolated from a Fly Ash Landfill Site. Water Air Soil Pollut 226, 374 (2015). https://doi.org/10.1007/s11270-015-2641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2641-x

Keywords

Navigation