Skip to main content
Log in

Azo Dye Acid Blue 29: Biosorption and Phytotoxicity Test

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Many products contain dyes, such as fabrics. However, most of the industry-generated waste is improperly handled, which causes serious environmental problems for the bodies of water that receive textile effluents. This study aimed to analyze the effect of biosorbents and biosorption techniques on decolorizing the textile azo dye Acid Blue 29 in an aqueous solution employing pine sawdust. Pine sawdust is low-cost substrate with minor environmental impact. A toxicity test was performed with Lactuca sativa seeds to determine the LC50 of the dye. Subsequently, a biosorption test was performed to determine the toxicity of the resulting solutions. We observed that biosorption is a very feasible technique for the discoloration of the solutions and promotes reduction in their toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, S. J., Mckay, G., & Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, 322–333.

    Article  CAS  Google Scholar 

  • Almeida, E. J. R., & Corso, C. R. (2014). Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere, 112, 317–322.

    Article  CAS  Google Scholar 

  • Asgher, M., & Bhatti, H. N. (2010). Mechanistic and kinetic evaluation of biosorption of reactive azo dyes by free, immobilized and chemically treated Citrus sinensis waste biomass. Ecological Engineering, 36, 1660–1665.

    Article  Google Scholar 

  • Corso, C. R., & Almeida, A. C. M. (2009). Bioremediation of dyes in textile effluents by Aspergillus oryzae. Microbial Ecology, 57, 384–390.

    Article  CAS  Google Scholar 

  • Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30, 953–971.

    Article  CAS  Google Scholar 

  • Gong, R., Ding, Y., Li, M., Yang, C., Liu, H., & Sun, Y. (2005). Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigments, 64, 187–192.

    Article  CAS  Google Scholar 

  • Kimura, I. Y., Gonçalves, A. C., Jr., Stolberg, J., Laranjeira, M. C. M., & Fávere, V. T. (1999). Efeito do pH e do tempo de contato na adsorção de corantes reativos por microesferas de quitosana. Polímeros: Ciência e Tecnologia, 9, 51–57.

    Article  CAS  Google Scholar 

  • Kunz, A., Peralta-Zamora, P., Moraes, S. G., & Durán, N. (2002). Novas tendências no tratamento de efluentes têxteis. Quimica Nova, 25, 78–82.

    Article  CAS  Google Scholar 

  • Kurniawan, A., Sutiono, H., Indraswati, N., & Ismadji, S. (2012). Removal of basic dyes in binary system by adsorption using rarasaponin–bentonite: revisited of extended Langmuir model. Chemical Engineering Journal, 189–190, 264–274.

    Article  Google Scholar 

  • López, M. J., Guisado, G., Vargas-Garcia, M. C., Suárez-Estrella, F., & Moreno, J. (2006). Decolorization of industrial dyes by ligninolytic microorganism isolated from compositing environment. Enzyme and Microbial Technology, 401, 42–45.

    Article  Google Scholar 

  • Mitter, E. K., Santos, G. C., Almeida, E. J. R., Morão, L. G., Rodrigues, H. D. P., & Corso, C. R. (2012). Analysis of acid Alizarin Violet N dye removal using sugarcane bagasse as adsorbent. Water, Air, and Soil Pollution, 223, 765–770.

    Article  CAS  Google Scholar 

  • Patil, P., Desai, N., Govindwar, S., Jadhav, J. P., & Bapat, V. (2009). Degradation analysis of Reactive Red 198 by hairy roots of Tagetes patula L. (marigold). Planta, 230, 725–735.

    Article  CAS  Google Scholar 

  • Rahman, A., Urabe, T., & Kishimoto, N. (2013). Color removal of reactive procion dyes by clay adsorbents. Procedia Environmental Sciences, 17, 270–278.

    Article  CAS  Google Scholar 

  • Sobrero, M. S., & Ronco, A. (2008). Ensayo de toxidad aguda con semillas de lechuga Lactuca sativa L. Ensayos toxicológicos pra la evalucion de susbstancias químicas em agua y suelo (Vol. 1, pp. 55–68).

    Google Scholar 

  • Utomo, H. D., Phoon, R. Y. N., Shen, Z., & Ng, L. H. (2015). Removal of Methylene Blue using chemically modified sugarcane bagasse. Natural Resources, 6, 209–220.

    Article  CAS  Google Scholar 

  • Vitor, V., & Corso, C. R. (2008). Decolorization of textile dye by Candida albicans isolated from industrial effluents. Journal of Industrial Microbiology and Biotechnology, 35, 1353–1357.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from the Brazilian fostering agencies Pibic/Pibid, FAPESP/Brazil, CAPES/Brazil, CNPq/Brazil, and Fundunesp/Brazil is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Érica Janaina Rodrigues de Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guari, E.B., de Almeida, É.J.R., de Jesus Sutta Martiarena, M. et al. Azo Dye Acid Blue 29: Biosorption and Phytotoxicity Test. Water Air Soil Pollut 226, 361 (2015). https://doi.org/10.1007/s11270-015-2611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2611-3

Keywords

Navigation