Skip to main content

Advertisement

Log in

Examination of Three Different Organic Waste Biochars as Soil Amendment for Metal-Contaminated Agricultural Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The efficiency of biochars (BCs) derived from paper mill sludge (PM-BC), distillery sludge (DS-BC), and pruned branches from roadside trees (PB-BC) for immobilization of selected heavy metals (Cd and Zn) in agricultural soils was examined in the current study. This examination was conducted in order to elucidate whether the recycling of organic wastes could be used as a management option for metal-contaminated agricultural soils. Biochars were applied to contaminated upland soil exceeding the guideline values for Cd (4 mg kg−1) and Zn (300 mg kg−1) in Korea. Both the incubation study and the pot trial with lettuce cultivation were carried out using soil-BCs mixtures at 0, 1, 2, and 5 % (w/w). From the incubation study, it appears that BCs incorporated into the soil induces an increasing soil pH and a significant decline (Cd 36 ~ 100 %; Zn 54 ~ 100 %) in the phytoavailable metal pool examined by 1 M NH4NO3 extraction. The PM-BC was most effective in the reduction of Cd and Zn phytoavailability, due to a significantly higher pH and surface area than the DS-BC and PB-BC. Similar results were observed in the pot trial, where the uptake of heavy metals by lettuce greatly declined with PM-BC incorporation (Cd 26 ~ 71 %; Zn 28 ~ 45 %). PM-BC enhanced the lettuce growth performance evidenced by the highest yield of lettuce being observed with PM-BC-treated soils at 5 %. This was attributed to retardation of the metal toxic effect induced by a decrease in Cd accumulation, while the increased nutrient elements originated from PM-BC. This present study indicates that paper mill sludge is a great candidate for biochar production that can be utilized as a soil amendment for metal-contaminated agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, M., Lee, S. S., Yang, J. E., Ro, H. M., Lee, Y. H., & Ok, Y. S. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 79, 225–231.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., Zhang, A., Rutlidge, H., Wong, S., Chia, C., Marjo, C., Gong, B., Munroe, P., & Donne, S. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Adriano, D. C., Mani, P. A., & Duraisamy, A. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant and Soil, 251, 187–198.

    Article  CAS  Google Scholar 

  • CEN (Committee for European Normalization). (2011a). EN 13037:2011 Soil improvers and growing media - Determination of pH. Belgium: CEN (Committee for European Normalization).

    Google Scholar 

  • CEN (Committee for European Normalization). (2011b). EN 13038:2011 Soil improvers and growing media - Determination of electrical conductivity. Belgium: CEN (Committee for European Normalization).

    Google Scholar 

  • DIN 19730 (Deutches Institute für Normung). (1995). Soil quality extraction of trace elements with ammonium nitrate solution. Berlin: DIN 19730 (Deutches Institute für Normung).

    Google Scholar 

  • Fellet, G., Marmiroli, M., & Marchiol, L. (2014). Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of the Total Environment, 468–469, 598–608.

    Article  Google Scholar 

  • Garau, G., Castaldi, P., Santona, L., Deiana, P., & Melis, P. (2007). Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142, 47–57.

    Article  CAS  Google Scholar 

  • Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution, 142, 530–539.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013a). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92, 1450–1457.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013b). Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57, 196–204.

    Article  CAS  Google Scholar 

  • Khan, S., Chao, C., Waqas, M., Arp, H. P. H., & Zhu, Y. G. (2013). Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environmental Science & Technology, 47, 8624–8632.

    CAS  Google Scholar 

  • Kim, K. R., Owens, G., & Kwon, S. I. (2010a). Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study. Journal of Environmental Sciences, 22, 98–105.

    Article  CAS  Google Scholar 

  • Kim, K. R., Owens, G., & Naidu, R. (2010b). Effect of root-induced chemical changes on dynamics and plant uptake of heavy metals in rhizosphere soils. Pedosphere, 20, 494–504.

    Article  Google Scholar 

  • Korea Zero Waste Movement Network. (2010). Estimating of quantity of timber recycling resources. Seoul: Korea Zero Waste Movement Network.

    Google Scholar 

  • Lee, S. S., Lim, J. E., El-Azeem, S. A. A., Choi, B., Oh, S. E., Moon, D. H., & Ok, Y. S. (2013). Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research, 20, 1719–1726.

    Article  CAS  Google Scholar 

  • Lehmann, J. (2007a). A handful of carbon. Nature, 447, 143–144.

    Article  CAS  Google Scholar 

  • Lehmann, J. (2007b). Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381–387.

    Article  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—a review. Mitigation and Adaptation Strategies for Global Change, 11, 395–419.

    Article  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—a review. Soil Biology and Biochemistry, 43, 1812–1836.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  Google Scholar 

  • Lombi, E., Hamon, R. E., McGrath, S. P., & McLaughlin, M. J. (2003). Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science & Technology, 37, 979–984.

    Article  CAS  Google Scholar 

  • Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N., Pei, J., & Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment, 191, 124–132.

    Article  CAS  Google Scholar 

  • Mench, M., & Martin, E. (1991). Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant and Soil, 132, 187–196.

    CAS  Google Scholar 

  • Méndez, A., Gómez, A., Paz-Ferreiro, J., & Gascó, G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89, 1354–1359.

    Article  Google Scholar 

  • Ministry of Environment. (2010). Soil environment conservation act. Gwacheon: Ministry of Environment.

    Google Scholar 

  • Ministry of Environment. (2013). The state of solid waste generation and treatment in 2012. Gwacheon: Ministry of Environment.

    Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresource Technology, 160, 191–202.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Naidu, R., Bolan, N. S., Kookana, R. S., & Tiller, K. G. (1994). Ionic‐strength and pH effects on the sorption of cadmium and the surface charge of soils. European Journal of Soil Science, 45, 419–429.

    Article  CAS  Google Scholar 

  • Oliver, M. A. (1997). Soil and human health: a review. European Journal of Soil Science, 48, 573–592.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011a). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439–451.

    Article  CAS  Google Scholar 

  • Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. W. (2011b). Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. Journal of Hazardous Materials, 185, 549–574.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G., Lee, S. J., Bolan, N., Chung, J. W., & Edraki, M. (2013). Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air, & Soil Pollution, 224, 1–12.

    Google Scholar 

  • Pavel, L. V., & Gavrilescu, M. (2008). Overview of ex situ decontamination techniques for soil cleanup. Environmental Engineering and Management Journal, 7, 815–834.

    Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Lim, J. E., Ahmed, M. B. M., Zhang, M., Lee, S. S., & Ok, Y. S. (2014). Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere, 111, 500–504.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59, 2501–2510.

    Article  CAS  Google Scholar 

  • Vervaeke, P., Tack, F. M. G., Lust, N., & Verloo, M. (2004). Short-and longer-term effects of the willow root system on metal extractability in contaminated dredged sediment. Journal of Environmental Quality, 33, 976–983.

    Article  CAS  Google Scholar 

  • Wang, H., Lin, K., Hou, Z., Richardson, B., & Gan, J. (2010). Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. Journal of Soils and Sediments, 10, 283–289.

    Article  CAS  Google Scholar 

  • Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488–3497.

    Article  CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407, 1551–1561.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out with the support of the “Research Program for Agricultural Science and Technology Development (PJ009828),” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kye-Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Kim, K.R., Ok, Y.S. et al. Examination of Three Different Organic Waste Biochars as Soil Amendment for Metal-Contaminated Agricultural Soils. Water Air Soil Pollut 226, 282 (2015). https://doi.org/10.1007/s11270-015-2556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2556-6

Keywords

Navigation