Skip to main content
Log in

Isolation and Characterization of Cadmium- and Arsenic-Absorbing Bacteria for Bioremediation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The contamination of hazardous metal(loid) is one of the serious environmental and human health risks. This study isolated a total of 40 cadmium (Cd)- and arsenic (As)-resistant bacterial isolates from coastal sediments by pour plate technique using tryptic soy agar supplemented with Cd or As (50 mg l−1) for use as metal(loid) bioremediation agents. Out of 40, 4 isolates, RCd3, RCd6, RAs7, and RAs10, showed a relatively higher growth rate in Cd- or As-supplemented culture media which were selected for further study. The selected isolates showed a high minimum inhibitory concentration (60–400 mg l−1 for Cd and 400–2200 mg l−1 for As), which demonstrated their remarkable Cd and As resistance capabilities. The metal(loid) removal efficiencies (0.032–0.268 μg Cd h−1 mg−1 and 0.0003–0.0172 μg As h−1 mg−1 [wet weight cell]) of selected isolates indicated their greater magnitude in absorbing Cd compared to As from water. Phylogenetic analysis of the 16S rDNA sequences revealed that isolates RCd3, RCd6, RAs7, and RAs10 were closely related to Acinetobacter brisouii, Pseudomonas abietaniphila, Exiguobacterium aestuarii, and Planococcus rifietoensis, respectively. Because of high Cd and As resistance and removal efficiency, the selected isolates can survive in a high metal(loid)-contaminated environment and could be a potential tool for bioremediation of high metal(loid)-contaminated effluents to protect the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40(3–4), 997–1026.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  CAS  Google Scholar 

  • Amundsen, P. A., Staldvik, F. J., Lukin, A. A., Kashulin, N. A., Popova, O. A., & Reshetnikov, Y. S. (1997). Heavy metal contamination in freshwater fish from the border region between Norway and Russia. The Science of the Total Environment, 201(3), 211–224.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Hontzeas, N., & Safronova, V. I. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37(2), 241–250.

    Article  CAS  Google Scholar 

  • Bhakta, J. N., & Munekage, Y. (2010). Spatial distribution and contamination status of arsenic, cadmium and lead in some coastal shrimp (Macrobrachium rosenbergii) farming ponds of Viet Nam. Pacific Journal of Science and Technology, 11(1), 606–615.

    Google Scholar 

  • Bhakta, J. N., Munekage, Y., Ohnishi, K., & Jana, B. B. (2012a). Isolation and identification of cadmium and lead resistant lactic acid bacteria for applying as metal removing probiotic. International journal of Environmental Science and Technology, 9(3), 433–440.

    Article  CAS  Google Scholar 

  • Bhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K., & Wei, M. (2012b). Characterization of lactic acid bacteria-based probiotics as heavy metals sorbents. Journal of Applied Microbiology, 112(6), 1193–1206.

    Article  CAS  Google Scholar 

  • Bhakta, J. N., Majumdar, B. P., & Munekage, Y. (2014). Development of activated carbon from cotton fibre waste as potential mercury adsorbent: kinetic and equilibrium studies. Chemical Engineering Journal, 2014, 7.

    Google Scholar 

  • Brown, M. J., & Lester, J. N. (1982). Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—1. Effects of metal concentration. Water Research, 16(11), 1539–1548.

    Article  CAS  Google Scholar 

  • Campbell, P. G. C. (2006). Cadmium—a priority pollutant. Environmental Chemistry, 3, 387–388.

    Article  CAS  Google Scholar 

  • Choudhury, H., & Mudipalli, A. (2008). Potential considerations & concerns in the risk characterization for the interaction profiles of metals. The Indian Journal of Medical Research, 128, 462–483.

    CAS  Google Scholar 

  • Edwards, P. (2005a). Demise of peri-urban wastewater-fed aquaculture? Urban Agriculture Magazine, 14, 27–29.

    Google Scholar 

  • Edwards, P. (2005b). Development status of, and prospects for, wastewater-fed aquaculture in urban environments. In B. Costa-Pierce, A. Desbonnet, P. Edwards, & D. Baker (Eds.), Urban aquaculture (pp. 45–59). Wallingford: CABI.

    Chapter  Google Scholar 

  • Elsilk, S. E., El-Shanshoury, A. E. R., & Ateya, P. S. (2014). Accumulation of some heavy metals by metal resistant avirulent Bacillus anthracis PS2010 isolated from Egypt. Africa Journal of Microscopy Research, 8(12), 1266–1276.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46(8), 834–840.

    Article  CAS  Google Scholar 

  • Giller, K., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30(10–11), 1389–1414.

    Article  CAS  Google Scholar 

  • Gupta, U. C., & Gupta, S. C. (1998). Trace element toxicity relationships to crop production and livestock and human health: implications for management. Communications in Soil Science and Plant Analysis, 29(11–14), 1491–1522.

    Article  CAS  Google Scholar 

  • Hemond, H. F., & Solo-Gabriele, H. M. (2004). Children’s exposure to arsenic from CCA-treated wooden decks and playground structures. Risk Analy, 24(1), 51–64.

    Article  Google Scholar 

  • Hrudey, S. E., Chen, W., & Rousseaux, C. G. (1995). Bioavailability in environmental risk assessment. Boca Raton: Lewis Publ.

    Google Scholar 

  • Idris, R., Trifonova, R., & Puschenreiter, M. (2004). Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70(5), 2667–2677.

    Article  CAS  Google Scholar 

  • International Occupational Safety and Health Information Centre. (1999). Metals in basics of chemical safety (7th ed.). Geneva: International Labour Organization.

    Google Scholar 

  • Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., et al. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62(Pt 3), 716–721.

    Article  CAS  Google Scholar 

  • Kratochvil, D., & Volesky, D. (1998). Advances in the biosorption of heavy metals. Tybtech, 16(7), 291–300.

    Article  CAS  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  Google Scholar 

  • Lee, S.-H., Chang, K.-S., Su, M.-S., Huang, Y.-S., & Jang, H.-D. (2007). Effects of some Chinese medicinal plant extracts on five different fungi. Food Control, 18, 1547–1554.

    Article  Google Scholar 

  • Long, A., & Wang, W. (2005). Assimilation and bioconcentration of Ag and Cd by the marine black bream after waterborne and dietary metal exposure. Environmental Toxicology and Chemistry, 24(3), 709–716.

    Article  CAS  Google Scholar 

  • Mathivanan, K., & Rajaram, R. (2014). Tolerance and biosorption of cadmium (II) ions by highly cadmium resistant bacteria isolated from industrially polluted estuarine environment. Indian Journal of Geo-Marine Sciences, 43(4), 580–588.

    Google Scholar 

  • Min-sheng, H., Jing, P., & Le-ping, Z. (2001). Removal of heavy metals from aqueous solutions using bacteria. Journal of Shanghai University, 5(3), 253–259.

    Article  Google Scholar 

  • Murphy, B. L., Toole, A. P., & Bergstrom, P. D. (1989). Health risk assessment for arsenic contaminated soil. Environ. Geochem. Heal., 11(3–4), 163–169.

    Article  CAS  Google Scholar 

  • Navarro, C. A., von Bernath, D., & Jerez, C. A. (2013). Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biological Research, 46(4), 363–371.

    Article  Google Scholar 

  • Pazirandeh, M., Wells, B. M., & Ryan, R. L. (1998). Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Applied and Environmental Microbiology, 64(10), 4068–4072.

    CAS  Google Scholar 

  • Phuong, N. T. D., & Tuan, P. A. (2005). Current status of periurban aquatic production in Hanoi. Urban Agriculture Magazine, 14, 10–12.

    Google Scholar 

  • Qing, H., Min-Na, D., Hong-Yan, Q., Xiang-Ming, X., Guo-Qiang, Z., & Min, Y. (2007). Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE. Journal of Environmental Sciences, 19(9), 1114–1119.

    Article  Google Scholar 

  • Roane, T. M., & Kellogg, S. T. (1996). Characterization of bacterial communities in heavy metal contaminated soils. Canadian Journal of Microbiology, 42(6), 593–603.

    Article  CAS  Google Scholar 

  • Roberts, J. R. (1999). Metal toxicity in children. In Training manual on pediatric environmental health: putting it into practice. Emeryville: Children’s Environmental Health Network. http://www.cehn.org/cehn/trainingmanual/pdf/manual-full.pdf. Accessed 23 Aug 2013.

  • Ruangsomboon, S., & Wongrat, L. (2006). Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus and C. gariepinus. Qualitative Toxicity, 78(1), 15–20.

    CAS  Google Scholar 

  • Ruiz-Barba, J. L., Maldonado, A., & Jiménez-Díaz, R. (2005). Small-scale total DNA extraction from bacteria and yeast for PCR applications. Analytical Biochemistry, 347(2), 333–335.

    Article  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  Google Scholar 

  • Trakranrungsie, N., Chatchawanchonteera, A., & Khunkitti, W. (2007). Ethnoveterinary study for antidermatophytic activity of Piper betle, Alpinia galanga and Allium ascalonicum extracts in vitro. Research in Veterinary Science, 84(1), 80–84.

    Article  Google Scholar 

  • USEPA. (1992). Common chemicals found at superfund sites. Minerals Engineering, 14, 317–340. U.S. Gov Print Office, Washington, DC.

    Google Scholar 

  • Yamina, B., Tahar, B., & Marie Laure, F. (2012). Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Water Science and Technology, 66(10), 2041–2048.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the government of Japan for sponsoring the grant-in-aid for scientific research fund to carry out the present study. Dr. Bhakta is also especially grateful to Japan Society for Promotion of Science (JSPS) for providing the fellowship under the “FY2009 JSPS postdoctoral fellowship for foreign researcher.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatindra N. Bhakta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakta, J.N., Munekage, Y., Ohnishi, K. et al. Isolation and Characterization of Cadmium- and Arsenic-Absorbing Bacteria for Bioremediation. Water Air Soil Pollut 225, 2151 (2014). https://doi.org/10.1007/s11270-014-2151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2151-2

Keywords

Navigation