Skip to main content
Log in

Sustainable Removal of Nitrophenols by Rhizoremediation Using Four Strains of Bacteria and Giant Duckweed (Spirodela polyrhiza)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We examined the effectiveness of rhizoaugmentation for treating water contaminated with the nitrophenols (NPs), 2-NP, 3-NP, 4-NP, and 2,4-dinitrophenol (2,4-DNP) using NP-degrading bacteria. We used 2-NP-degrading Pseudomonas sp. (strain ONR1), 3-NP-degrading Cupriavidus sp. (MFR2), 4-NP-degrading Rhodococcus sp. (PKR1), 2,4-DNP-degrading Rhodococcus sp. (DNR2), and giant duckweed (Spirodela polyrhiza). The four bacterial strains readily colonized Spirodela roots, as approximately 1 × 105 colony-forming units [CFUs] plant−1 to 106–107 CFU plant−1. The higher populations remained stable through five sequential 2-day degradation cycles and completely removed all four NPs within each cycle. The root–bacteria association also successfully treated wastewater effluent contaminated with NPs; 52–71 % of 2-NP and 100 % of 3-NP, 4-NP, and 2,4-DNP were removed within each of five 2-day cycles. These results demonstrate the potential of rhizoaugmentation to achieve efficient and sustainable treatment of NP-contaminated waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig 3

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1992). Toxicology profile for nitrophenols. http://www.atsdr.cdc.gov/toxprofiles/tp50.pdf. Accessed 10 Feb 2014.

  • Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. J. (2005). Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science and Pollution Research International, 12(1), 34–48.

    Article  CAS  Google Scholar 

  • Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation, 54, 61–67.

    Article  CAS  Google Scholar 

  • Goux, S., Shapir, N., El Fantroussi, S., Lelong, S., Agathos, S. N., & Pussemier, L. (2003). Long-term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water, Air, and Soil Pollution, 3, 131–142.

    Article  CAS  Google Scholar 

  • Hazardous Substances Data Bank (HSDB) (1999). Nitrophenols. http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~M3C9oV:1. Accessed 10 Feb 2014.

  • Heinaru, E., Merimaa, M., Viggor, S., Lehiste, M., Leito, I., Truu, J., et al. (2005). Biodegradation efficiency of functionally important population selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiological Ecology, 51(3), 363–373.

    Article  CAS  Google Scholar 

  • Hoang, H., Inoue, D., Momotani, N., Yu, N., Toyama, T., Sei, K., et al. (2009). Characterization of novel 4-n-butylphenol degrading Pseudomonas veronii strains isolated from rhizosphere of giant duckweed, Spirodela polyrhiza. Japanese Journal of Water Treatment Biology, 45, 83–92.

    Google Scholar 

  • Japan Ministry of Environment (2010). The detailed environmental survey in fiscal year 2009. http://www.env.go.jp/chemi/kurohon/en/http2010e/pdf/04_Chapter2.pdf. Accessed 7 June 2011.

  • Kristanti, R. A., Kanbe, M., Toyama, T., Tanaka, Y., & Mori, K. (2012a). Accelerated biodegradation of nitrophenols in the rhizosphere of Spirodela polyrhiza. Journal of Environmental Science, 24(5), 800–807.

    Article  CAS  Google Scholar 

  • Kristanti, R. A., Kanbe, M., Hadibarata, T., Toyama, T., Tanaka, Y., & Mori, K. (2012b). Isolation and characterization of 3-nitrophenol degrading bacteria associated with rhizosphere of Spirodela polyrhiza. Environmental Science and Pollution Research, 19, 1852–1858.

    Article  CAS  Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17(1), 6–15.

    Article  CAS  Google Scholar 

  • Mori, K., Toyama, T., & Sei, K. (2005). Surfactant degrading activities in the rhizosphere of giant duckweed (Spirodela polyrhiza). Japanese Journal of Water Treatment Biology, 41, 129–140.

    Article  Google Scholar 

  • Mrozik, A., & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165(5), 363–375.

    Article  CAS  Google Scholar 

  • Ogata, Y., Momotani, N., Toyama, T., Inoue, D., Sei, K., Soda, S., et al. (2009). Occurence of 4-n-butylphenol degradation in aquatic samples caused by the presence of Spirodela polyrhiza. Biodegradation, 24, 191–202.

    Article  Google Scholar 

  • Olson, P. E., Castro, A., Joern, M., DuTeau, N. M., Pilon-Smits, E. A. H., & Reardon, K. F. (2007). Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. Journal of Environmental Quality, 36, 1461–1469.

    Article  CAS  Google Scholar 

  • Phillips, L. A., Greer, C. W., & Germida, J. J. (2006). Culture-based and culture-independent assessment of the impact of the mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biology and Biochemistry, 38, 2823–2833.

    Article  CAS  Google Scholar 

  • Ryslava, E., Krejcik, Z., Macek, T., Novakova, H., Demnerova, K., & Mackova, M. (2003). Study of PCB degradation in real contaminated soil. Fresenius Environmental Bulletin, 12, 296–301.

    CAS  Google Scholar 

  • Siciliano, S. D., Germida, J. J., Banks, K., & Greer, C. W. (2003). Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Applied Environmental Microbiology, 69, 483–489.

    Article  CAS  Google Scholar 

  • Spain, J. S. (1995). Biodegradation of nitro-aromatic compounds. Annual Reviews of Microbiology, 49, 523–555.

    Article  CAS  Google Scholar 

  • Toyama, T., Yu, N., Kumada, H., Sei, K., Ike, M., & Fujita, M. (2006). Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrhiza and bacteria in its rhizosphere. Journal of Bioscience and Bioengineering, 101, 346–353.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (2011). Priority pollutant. http://water.epa.gov/scitech/methods/cwa/pollutants.cfm. Accessed 7 June 2011.

  • Wood, T. K. (2008). Molecular approaches in bioremediation. Current Opinion in Biotechnology, 19(6), 572–578.

    Article  CAS  Google Scholar 

  • World Health Organization (2000). Concise International Chemical Assessment Document 20, Mononitrophenols. http://www.who.int/ipcs/publications/cicad/en/cicad20.pdf. Accessed 7 June 2011.

Download references

Acknowledgments

This research was supported by the Japan Science and Technology Agency (JST) as part of the Advanced Low Carbon Technology Research and Development Program (ALCA) with the research theme of “Development of highly-ordered vegetational bioprocesses utilizing symbiotic interactions in the rhizosphere.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristanti, R.A., Toyama, T., Hadibarata, T. et al. Sustainable Removal of Nitrophenols by Rhizoremediation Using Four Strains of Bacteria and Giant Duckweed (Spirodela polyrhiza). Water Air Soil Pollut 225, 1928 (2014). https://doi.org/10.1007/s11270-014-1928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1928-7

Keywords

Navigation