Skip to main content
Log in

Synthesis and Characterization of Fe3O4@n-SiO2 Nanoparticles from an Agrowaste Material and Its Application for the Removal of Cr(VI) from Aqueous Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present study deals with the synthesis and subsequent application of Fe3O4@n-SiO2 nanoparticles for the removal of Cr(VI) from aqueous solutions. Rice husk, an agrowaste material, was used as a precursor for the synthesis of nanoparticles of silica. Synthesized nanoparticles were characterized by XRD and SEM to investigate their specific characteristics. Fe3O4@n-SiO2 nanoparticles were used as adsorbent for the removal of Cr(VI) from their aqueous solutions. The effects of various important parameters, such as initial Cr(VI) concentration, adsorbent dose, temperature, and pH, on the removal of Cr(VI) were analyzed and studied. A pH of 2.0 was found to be optimum for the higher removal of Cr(VI) ions. It was observed that removal (%) decreased by increasing initial Cr(VI) concentration from 1.36 × 10-2 to 2.4 × 10-2 M. The process of removal was found to be endothermic, and the removal increased with the rise in temperature from 25 to 45 °C. The kinetic data was better fitted in pseudo-second-order model in comparison to pseudo-first-order model. Langmuir and Freundlich adsorption capacities were determined and found to be 3.78 and 1.89 mg/g, respectively, at optimum conditions. The values of ΔG 0 were found to be negative at all temperatures, which confirm the feasibility of the process, while a positive value of ΔH 0 indicates the endothermic nature of the adsorption process. The present study revealed that Fe3O4@n-SiO2 nanoparticles can be used as an alternate for the costly adsorbents, and the outcome of this study may be helpful in designing treatment plants for treatment of Cr(VI)-rich effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ajmal, M., Rao, R. A. K., Anwar, S., Ahmad, J., & Ahmad, R. (2003). Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresource Technology, 86(2), 147–149.

    Article  CAS  Google Scholar 

  • Ajouyed, O., Hurel, C., Ammari, M., Allal, L. B., & Marmier, N. (2010). Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: effects of pH, ionic strength and initial concentration. Journal of Hazardous Materials, 174(2010), 616–622.

    Article  CAS  Google Scholar 

  • Albadarina, A. B., Mangwandi, C., Al-Muhtase, A. H., Walker, G. M., Allea, S. J. M., & Ahmad, N. M. (2012). Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chemical Engineering Journal, 179, 193–202.

    Article  Google Scholar 

  • AL-Othman, Z. A., Ali, R., & Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 184, 238–247.

    Article  CAS  Google Scholar 

  • Asgari, A. R., Vaezi, F., Nasseri, S., Dordelmann, O., Mahvi, H., & Dehghani Fard, E. (2008). Removal of hexavalent chromium from drinking water by granular ferric hydroxide. Iranian Journal of Environmental Health Science and Engineering, 5, 277–282.

    CAS  Google Scholar 

  • Ayuso, E., Sanchez, A., & Querol, G. X. (2007). Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. Journal of Hazardous Materials, 142, 191–198.

    Article  Google Scholar 

  • Baral, S. S., Das, S. N., & Rath, P. (2006). Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 31, 216–222.

    Article  CAS  Google Scholar 

  • Chen, S., Yue, Q., Gao, B., & Xu, X. (2010). Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. Journal of Colloid and Interface Science, 349, 256–264.

    Article  CAS  Google Scholar 

  • Chen, L., Lu, L., Shao, W., & Luo, F. (2011). Kinetics and equilibria of Cd(II) adsorption onto a chemically modified lawny grass with H[BTMPP]. Journal of Chemical Engineering Data, 56, 1059–1068.

    Article  CAS  Google Scholar 

  • Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X., & Fu, K. (2012). Adsorption of hexavalent chromium from aqueous solution by modified cornstalk: a fixed-bed column study. Bioresource Technology, 113, 114–120.

    Article  CAS  Google Scholar 

  • El-Sh, E. I. (2007). Sorption of Cd(II) and Se(IV) from aqueous solution using modified rice husk. Journal of Hazardous Materials, 147, 546–555.

    Article  Google Scholar 

  • Elwakeel, K. Z. (2010). Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination, 250, 105–112.

    Article  CAS  Google Scholar 

  • Gang, D., Banerji, S. K., & Clevenger, T. E. (2000). Chromium(VI) removal by modified PVP-coated silica gel (pp. 105–110). Toxic, And Radioactive Waste Management, ASCE: Practice Periodical Of Hazardous.

    Google Scholar 

  • Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science, 342, 135–141.

    Article  CAS  Google Scholar 

  • Hameed, B. H. (2008). Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. Journal of Hazardous Materials, 154, 201–202.

    Google Scholar 

  • Hu, J., Lo, I. M. C., & Chen, G. (2005). Fast removal and recovery of Cr(VI) using surface modified jacobsite (MnFe2O4) nanoparticles. Langmuir, 21, 11173–11179.

    Article  CAS  Google Scholar 

  • Jiang, W., Pelaez, M. D., Dionysiou, D., Entezari, M. H., Tsoutsou, D., & O’Shea, K. (2013). Chromium (VI) removal by maghemite nanoparticles. Chemical Engineering Journal, 222, 527–533.

    Article  CAS  Google Scholar 

  • Jinhua, W., Xiang, Z., Bing, Z., Yafei, Z., Rui, Z., Jindun, L., et al. (2010). Rapid adsorption of Cr (VI) on modified halloysite nanotubes. Desalination, 259, 22–28.

    Article  Google Scholar 

  • Khalid, N., Ahmad, S., Toheed, A., & Ahmed, J. (2000). Potential of rice husks for antimony removal. Applied Radiation and Isotopes, 52, 31–38.

    Article  CAS  Google Scholar 

  • Kumar, U., & Bandyopadhyay, M. (2006). Fixed bed column study for Cd(II) removal from wastewater using treated rice husk. Journal of Hazardous Materials, 129(1–3), 253–259.

    Article  CAS  Google Scholar 

  • Kumar, P. A., Ray, M., & Chakraborty, S. (2007). Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. Journal of Hazardous Materials, 143, 24–32.

    Article  CAS  Google Scholar 

  • Kumar, M. A., Thirumalai, K., Sathishkumar, P., & Palvannana, T. (2012). Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon. Chemical Engineering Journal, 185–186, 178–186.

    Google Scholar 

  • Liou, T. H., Chang, F. W., & Lo, J. J. (1997). Pyrolysis kinetics of acid-leached rice husk. Industrial Engineering Chemistry Research, 36, 568–573.

    Article  CAS  Google Scholar 

  • Liu, W., Zhang, J., Zhang, C., Wang, Y., & Li, Y. (2010). Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk. Chemical Engineering Journal, 162, 677–684.

    Article  CAS  Google Scholar 

  • Madhavi, V., Prasad, T. N. V. K. V., Reddy, A. V. B., Reddy, B. R., & Madhavi, G. (2013). Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 17–25.

    Article  CAS  Google Scholar 

  • Malkoc, E., Nuhoglu, Y., & Dundar, M. (2006). Adsorption of chromium(VI) on pomace—an olive oil industry waste: batch and column studies. Journal of Hazardous Materials B, 138, 142–151.

    Article  CAS  Google Scholar 

  • Miretzkya, P., & Fernandez, C. A. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180, 1–19.

    Article  Google Scholar 

  • Muthukumaran, K., & Beulah, S. (2011). Removal of chromium (VI) from wastewater using chemically activated Syzygium jambolanum nut carbon by batch studies. Procedia Environmental Sciences, 4, 266–280.

    Article  CAS  Google Scholar 

  • Ng, C., Marshall, W., Rao, R. M., Bansode, R. R., Losso, J. N., & Portier, R. J. (2003). Granular activated carbons from agricultural by-products: process description and estimated cost of production. Louisiana State University Agricultural Center

  • Ng, C., Marshall, W. E. R., Rao, M., Bansode, R. R., & Losso, J. N. (2010). Activated carbon from pecan shell: process description and economic analysis. Industrial Crops and Products, 17(3), 209–217. doi:10.1016/S0926-6690(03)00002-5.

    Article  Google Scholar 

  • Ozcan, F. M., & Yilmaz, E. M. (2009). Preparation and application of calix[4]arene-grafted magnetite nanoparticles for removal of dichromate anions. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 29, 2378–2383.

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1990). Environmental pollution alternatives. EPA/625/5-90/025, EPA/625/4-89/023. Cincinnati, US

  • Rao, R. A. K., & Rehman, F. (2010). Adsorption studies on fruits of Gular (Ficus glomerata): removal of Cr(VI) from synthetic wastewater. Journal of Hazardous Materials, 181, 405–412.

    Article  CAS  Google Scholar 

  • Recillas, S., Colon, J., Casals, E., Gonzalez, E., Puntes, V., Sancheza, A., et al. (2010). Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. Journal of Hazardous Materials, 184, 425–431.

    Article  CAS  Google Scholar 

  • Saikia, J., Saha, B., & Das, G. (2011). Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles. Journal of Hazardous Materials, 186, 575–582.

    Article  CAS  Google Scholar 

  • Sayin, S., Ozcan, F., Yilmaz, M., Tor, A., Memon, S., & Cengeloglu, Y. (2010). Synthesis of calix[4]arene-grafted magnetite nanoparticles and evaluation of their arsenate as well as dichromate removal efficiency. Clean - Soil, Air, Water, 38(7), 639–648.

    CAS  Google Scholar 

  • Sayin, S., Yilmaz, M., & Tavasli, M. (2011). Syntheses of two diamine substituted 1,3-distal calix[4]arene-based magnetite nanoparticles for extraction of dichromate, arsenate and uranyl ions. Tetrahedron, 67, 3743–3753.

    Article  CAS  Google Scholar 

  • Sharma, Y. C., Uma Srivastava, V., Srivastava, J., & Mahto, M. (2007). Reclamation of Cr(VI) rich water and wastewater by wollastonite. Chemical Engineering Journal, 127, 151–156.

    Article  CAS  Google Scholar 

  • Sharma, Y. C., Srivastava, V., Singh, V. K., Kaul, S. N., & Weng, C. H. (2009a). Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology, 30, 583–609.

    Article  CAS  Google Scholar 

  • Sharma, Y. C., Srivastava, V., Weng, C. H., & Upadhyay, S. N. (2009b). Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles. The Canadian Journal Of Chemical Engineering, 87, 921–929.

    Article  CAS  Google Scholar 

  • Sharma, Y. C., Srivastava, V., & Mukherjee, A. K. (2010). Synthesis and application of nano-Al2O3 powder for the reclamation of hexavalent chromium from aqueous solutions. Journal of Chemical Engineering Data, 55, 2390–2398.

    Article  CAS  Google Scholar 

  • Shi, L., Zhang, X., & Chen, Z. (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45, 886–892.

    Article  CAS  Google Scholar 

  • Shukla, D., & Vankar, P. S. (2012). Efficient biosorption of chromium(VI) ion by dry Araucaria leaves. Environmental Science and Pollution Research, 19, 2321–2328.

    Article  CAS  Google Scholar 

  • Si, S., Kotal, A., Mandal, T. K., Giri, S., Nakamura, H., & Kohara, T. (2004). Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials, 16, 3489–3496.

    Article  CAS  Google Scholar 

  • Singh, D., Kumar, R., Kumar, A. K., & Rai, N. (2008). Synthesis and characterization of rice husk silica, silica-carbon composite and H3PO4 activated silica. Cerâmica, 54, 203–212.

    Article  CAS  Google Scholar 

  • Smith, W. A., Apel, W. A., Petersen, J. N., & Peyton, B. M. (2002). Effect of carbon and energy source on bacterial chromate reduction. Bioremediation Journal, 6, 205–215.

    Article  CAS  Google Scholar 

  • Srivastava, V., Singh, P. K., Weng, C. H., & Sharma, Y. C. (2011). Economically viable synthesis of Fe3O4 nanoparticles and their characterization. Polish Journal of Chemical Technology, 13, 1–5.

    Article  Google Scholar 

  • Standard methods for the examination of water and wastewater., 14th edition,1976, APHA-AWWA-WPCF 307 A. Atomic absorption method for total chromium

  • Suksabye, P., Thiravetyan, P., & Nakbanpote, W. (2008). Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith. Journal of Hazardous Materials, 160, 56–62.

    Article  CAS  Google Scholar 

  • Tan, I. A. W., Hameed, B. H., & Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 127, 111–119.

    Article  CAS  Google Scholar 

  • Toles, C. A., Marshall, W. E., Johns, M. M., Wartelle, L. H., & Mc Aloon, A. (2000). Acid activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Biresource Technology, 71, 87–92.

    Article  CAS  Google Scholar 

  • Wong, K. K., Lee, C. K., Low, K. S., & Haron, M. J. (2003). Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere, 50(1), 23–28.

    Article  CAS  Google Scholar 

  • World Health Organization, Guidelines for drinking water quality, 3rd ed, World Health Organization, Geneva, Switzerland, 2006, p. 54.

  • Yadav, S., Srivastava, V., Banerjee, S., Weng, C. H., & Sharma, Y. C. (2012). Adsorption characteristics of modified sand for the removal of hexavalent chromium ions from aqueous solutions: kinetic, thermodynamic and equilibrium studies. Catena, 100, 120–127.

    Article  Google Scholar 

  • Yuan, P., Liua, D., Fana, M., Yang, D., Zhu, R., Ge, F., et al. (2010). Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of Hazardous Materials, 173, 614–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Varsha Srivastava) is thankful to the Department of Science and Technology for providing financial assistance in form of the WOS-A project. The authors are also thankful to the Department of Metallurgical Engineering, IIT-BHU for providing the facility for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, V., Sharma, Y.C. Synthesis and Characterization of Fe3O4@n-SiO2 Nanoparticles from an Agrowaste Material and Its Application for the Removal of Cr(VI) from Aqueous Solutions. Water Air Soil Pollut 225, 1776 (2014). https://doi.org/10.1007/s11270-013-1776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1776-x

Keywords

Navigation