Skip to main content
Log in

Mercury and Methylmercury Dynamics in the Hyporheic Zone of an Oregon Stream

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The role of the hyporheic zone in mercury (Hg) cycling has received limited attention despite the biogeochemically active nature of this zone and, thus, its potential to influence Hg behavior in streams. An assessment of Hg geochemistry in the hyporheic zone of a coarse-grained island in the Coast Fork Willamette River in Oregon, USA, illustrates the spatially dynamic nature of this region of the stream channel for Hg mobilization and attenuation. Hyporheic flow through the island was evident from the water-table geometry and supported by hyporheic-zone chemistry distinct from that of the bounding groundwater system. Redox-indicator species changed abruptly along a transect through the hyporheic zone, indicating a biogeochemically reactive stream/hyporheic-zone continuum. Dissolved organic carbon (DOC), total Hg, and methylmercury (MeHg) concentrations increased in the upgradient portion of the hyporheic zone and decreased in the downgradient region. Total Hg (collected in 2002 and 2003) and MeHg (collected in 2003) were correlated with DOC in hyporheic-zone samples: r 2 = 0.63 (total Hg-DOC, 2002), 0.73 (total Hg-DOC, 2003), and 0.94 (MeHg-DOC, 2003). Weaker Hg/DOC association in late summer 2002 than in early summer 2003 may reflect seasonal differences in DOC reactivity. Observed correlations between DOC and both total Hg and MeHg reflect the importance of DOC for Hg mobilization, transport, and fate in this hyporheic zone. Correlations with DOC provide a framework for conceptualizing and quantifying Hg and MeHg dynamics in this region of the stream channel, and provide a refined conceptual model of the role hyporheic zones may play in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambers, R. K. R., & Hygelund, B. N. (2001). Contamination of two Oregon reservoirs by cinnabar mining and mercury amalgamation. Environmental Geology, 40, 699–707.

    Article  CAS  Google Scholar 

  • Arrigoni, A. S., Poole, G. C., Mertes, L. A. K., O’Daniel, S. J., Woessner, W. W., & Thomas, S. A. (2008). Buffered, lagged, or cooled? Disentangling hyporheic influences on temperature cycles in stream channels. Water Resources Research, 44, W09418. doi:10.1029/2007WR006480.

    Article  Google Scholar 

  • Babiarz, C. L., Hurley, J. P., Hoffmann, S. R., Andren, A. W., Shafer, M. M., & Armstrong, D. E. (2001). Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters. Environmental Science and Technology, 35, 4773–4782.

    Article  CAS  Google Scholar 

  • Barringer, J. L., Riskin, M. L., Szabo, Z., Reilly, P. A., Rosman, R., Bonin, J. L., Fischer, J. M., & Heckathorn, H. A. (2010). Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA. Water, Air, & Soil Pollution, 212, 251–273.

    Article  CAS  Google Scholar 

  • Battin, T. J. (1999). Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an alpine stream hyporheic zone. Water Resources Research, 35, 3159–3169.

    Article  CAS  Google Scholar 

  • Bencala, K. E. (1993). A perspective on stream-catchment connections. Journal of the North American Benthological Society, 12, 44–47.

    Article  Google Scholar 

  • Bencala, K. E., Gooseff, M. N., & Kimball, B. A. (2011). Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections. Water Resources Research, W00H03, doi:10.1029/2010WR010066.

  • Benoit, J. M., Gilmour, C. C., Heyes, A., Mason, R. P., & Miller, C. L. (2003). Geochemcial and biological controls over methylmercury production and degradation in aquatic ecosystems. In Y. Chai & O. C. Braids (Eds.), Biogeochemistry of environmentally important trace elements (pp. 262–287). Washington, DC: American Chemical Society. ACS Symposium Series, v. 835.

  • Brenton R. W., & Arnett T. L. (1993). Methods of analysis by the US Geological Survey National Water Quality Laboratory—determination of dissolved organic carbon by UV-promoted persulfate oxidation and infrared spectrometry. U.S. Geological Survey Open-File Report 92–480.

  • Bricker, O. P., & Garrels, R. M. (1967). Mineralogic factors in natural water equilibria. In S. D. Faust & J. V. Hunter (Eds.), Principles and applications of water chemistry (pp. 449–468). New York: Wiley.

    Google Scholar 

  • Brigham M. E., Duris J. W., Wentz D. A., Button D. T., & Chasar L. C. (2008). Total mercury, methylmercury, and ancillary water-quality and streamflow data for selected streams in Oregon, Wisconsin, and Florida, 2002–06. U.S. Geological Survey Data Series 341.

  • Brigham, M. E., Wentz, D. A., Aiken, G. R., & Krabbenhoft, D. P. (2009). Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environmental Science and Technology, 43, 2720–2725.

    Article  CAS  Google Scholar 

  • Canuel, E. A., & Martens, C. S. (1996). Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment–water interface. Geochimica et Cosmochimica Acta, 60, 1793–1806.

    Article  CAS  Google Scholar 

  • Chadwick, S. P., Babiarz, C. L., Hurley, J. P., & Armstrong, D. E. (2006). Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Science of the Total Environment, 368, 177–188.

    Article  CAS  Google Scholar 

  • Chapelle, F. H., Bradley, P. M., Goode, D. J., Tiedeman, C., Lacombe, P. J., Kaiser, K., & Benner, R. (2009). Biochemical indicators for the bioavailability of organic carbon in ground water. Ground Water, 47, 108–121.

    Article  CAS  Google Scholar 

  • Choi, J., Harvey, J. W., & Conklin, M. H. (2000). Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams. Water Resources Research, 36, 1511–1518.

    Article  Google Scholar 

  • Conlon T. D., Wozniak K. C., Woodcock D., Herrera N.B ., Fisher B. J., Morgan D. S., Lee K. K., & Hinkle S. R. (2005). Ground-water hydrology of the Willamette Basin, Oregon. U.S. Geological Survey Scientific Investigations Report 2005–5168.

  • Creswell, J. E., Kerr, S. C., Meyer, M. H., Babiarz, C. L., Shafer, M. M., Armstrong, D. E., & Roden, E. E. (2008). Factors controlling temporal and spatial distribution of total mercury and methylmercury in hyporheic sediments of the Allequash Creek wetland, northern Wisconsin. Journal of Geophysical Research, G00C02, doi:10.1029/2008JG000742.

  • DeWild J. F., Olsen M. L., & Olund S. D. (2002). Determination of methylmercury by aqueous phase ethylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection. U.S. Geological Survey Open-File Report 2001–445.

  • Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., & Towse, J. E. (2009). Ultraviolet absorbance as a proxy for total dissolved mercury in streams. Environmental Pollution, 157, 1953–1956.

    Article  CAS  Google Scholar 

  • Domagalski, J. (2001). Mercury and methylmercury in water and sediment of the Sacramento River Basin, California. Applied Geochemistry, 16, 1677–1691.

    Article  CAS  Google Scholar 

  • Edwards, R. T. (1998). The hyporheic zone. In R. J. Naiman & R. E. Bilby (Eds.), River ecology and management (pp. 399–429). New York: Springer.

    Chapter  Google Scholar 

  • Findlay, S. E. G., Sinsabaugh, R. L., Sobczak, W. V., & Hoostal, M. (2003). Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography, 48, 1608–1617.

    Article  CAS  Google Scholar 

  • Fishman M. J., & Friedman L. C. (1989). Methods for determination of inorganic substances in water and fluvial sediments. U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1.

  • Fitzgerald, W. F., & Lamborg, C. H. (2003). Geochemistry of mercury in the environment. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (Vol. 9, pp. 107–148). Oxford: Pergamon.

    Google Scholar 

  • Flanders, J. R., Turner, R. R., Morrison, T., Jensen, R., Pizzuto, J., Skalak, K., & Stahl, R. (2010). Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream. Applied Geochemistry, 25, 1756–1769.

    Article  CAS  Google Scholar 

  • Frank F. J. (1973). Ground water in the Eugene-Springfield area, southern Willamette Valley, Oregon. U.S. Geological Survey Water-Supply Paper 2018

  • Fuller, C. C., & Harvey, J. W. (2000). Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. Environmental Science and Technology, 34, 1150–1155.

    Article  CAS  Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1967). Origin of the chemical compositions of some springs and lakes. In W. Stumm (Ed.), Equilibrium concepts in natural water systems (pp. 222–242). Washington, D.C.: American Chemical Society.

    Chapter  Google Scholar 

  • Grant, S. B., & Marusic, I. (2011). Crossing turbulent boundaries: interfacial flux in environmental flows. Environmental Science and Technology, 45, 7107–7113.

    Article  CAS  Google Scholar 

  • Greig, S. M., Sear, D. A., & Carling, P. A. (2007). A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos. Hydrological Processes, 21, 323–334.

    Article  Google Scholar 

  • Guy H. P., & Norman V. W. (1970). Field methods for measurement of fluvial sediment. U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. C2.

  • Hall, B. D., Aiken, G. R., Krabbenhoft, D. P., Marvin-DiPasquale, M., & Swarzenski, C. M. (2008). Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environmental Pollution, 154, 124–134.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments—reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

    Article  Google Scholar 

  • Henny, C. J., Kaiser, J. L., Packard, H. A., Grove, R. A., & Taft, M. R. (2005). Assessing mercury exposure and effects to American dippers in headwater streams near mining sites. Ecotoxicology, 14, 709–725.

    Article  CAS  Google Scholar 

  • Hester, E. T., & Gooseff, M. N. (2010). Moving beyond the banks: Hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environmental Science and Technology, 44, 1521–1525.

    Article  CAS  Google Scholar 

  • Hill, A. R., Labadia, C. F., & Sanmugadas, K. (1998). Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry, 42, 285–310.

    Article  CAS  Google Scholar 

  • Hinkle, S. R., Duff, J. H., Triska, F. J., Laenen, A., Gates, E. B., Bencala, K. E., Wentz, D. A., & Silva, S. R. (2001). Linking hyporheic flow and nitrogen cycling near the Willamette River—a large river in Oregon, USA. Journal of Hydrology, 244, 157–180.

    Article  CAS  Google Scholar 

  • Hope, B. K. (2006). An assessment of anthropogenic source impacts on mercury cycling in the Willamette Basin, Oregon, USA. The Science of the Total Environment, 356, 165–191.

    Article  CAS  Google Scholar 

  • Krabbenhoft, D. P., & Babiarz, C. L. (1992). The role of groundwater transport in aquatic mercury cycling. Water Resources Research, 28, 3119–3128.

    Article  CAS  Google Scholar 

  • Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P., & Andren, A. W. (1995). Mercury cycling in the Allequash Creek Watershed, northern Wisconsin. Water, Air, & Soil Pollution, 80, 425–433.

    Article  CAS  Google Scholar 

  • Lutz M. A., Brigham M. E., & Marvin-DiPasquale M. (2008). Procedures for collecting and processing streambed sediment and pore water for analysis of mercury as part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 2008–1279.

  • Marvin-DiPasquale, M., Lutz, M. A., Brigham, M. E., Krabbenhoft, D. P., Aiken, G. R., Orem, W. H., & Hall, B. D. (2009). Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment—pore water partitioning. Environmental Science and Technology, 43, 2726–2732.

    Article  CAS  Google Scholar 

  • McMahon, P. B., & Chapelle, F. H. (2008). Redox processes and water quality of selected principal aquifer systems. Ground Water, 46, 259–271.

    Article  CAS  Google Scholar 

  • Meyer, M. (2004). Role of the hyporheic zone in methylmercury production and transport to Allequash Creek. Materials and Geoenvironment, 51, 1213.

    Google Scholar 

  • Moldovan, O. T., Meleg, I. N., Levei, E., & Terente, M. (2013). A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators, 24, 412–420.

    Article  CAS  Google Scholar 

  • Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.

    Article  Google Scholar 

  • National Climatic Data Center. (2012). Summary of the day data lister. National Climatic Data Center. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?or1902. Accessed 4 Oct 2012.

  • O’Donnell, J. A., Aiken, G. R., Kane, E. S., & Jones, J. B. (2010). Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska. Journal of Geophysical Research, 115, G03025. doi:10.1029/2009JG001153.

    Google Scholar 

  • Palumbo-Roe, B., Wragg, J., & Banks, V. J. (2012). Lead mobilisation in the hyporheic zone and river bank sediments of a contaminated stream: contribution to diffuse pollution. Journal of Soils and Sediments, 12, 1633–1640.

    Article  CAS  Google Scholar 

  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter—a review. Chemosphere, 55, 319–331.

    Article  CAS  Google Scholar 

  • Schelker, J., Burns, D. A., Weiler, M., & Laudon, H. (2011). Hydrological mobilization of mercury and dissolved organic carbon in a snow–dominated, forested watershed: conceptualization and modeling. Journal of Geophysical Research, 116, G01002. doi:10.1029/2010JG001330.

    Article  Google Scholar 

  • Shanley, J. B., Mast, M. A., Campbell, D. H., Aiken, G. R., Krabbenhoft, D. P., Hunt, R. J., Walker, J. F., Schuster, P. F., Chalmers, A., Aulenbach, B. T., Peters, N. E., Marvin-DiPasquale, M., Clow, D. W., & Shafer, M. M. (2008). Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach. Environmental Pollution, 154, 143–154.

    Article  CAS  Google Scholar 

  • Sobczak, W. V., & Findlay, S. (2002). Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecology, 83, 3194–3209.

    Article  Google Scholar 

  • Stoor, R. W., Hurley, J. P., Babiarz, C. L., & Armstrong, D. E. (2006). Subsurface sources of methyl mercury to Lake Superior from a wetland-forested watershed. The Science of the Total Environment, 368, 99–110.

    Article  CAS  Google Scholar 

  • Trimmer, M., Grey, J., Heppell, C. M., Hildrew, A. G., Lansdown, K., Stahl, H., & Yvon-Durocher, G. (2012). River bed carbon and nitrogen cycling: state of play and some new directions. The Science of the Total Environment, 434, 143–158.

    Article  CAS  Google Scholar 

  • Triska, F. J., Duff, J. H., & Avanzino, R. J. (1990). Influence of exchange flow between the channel and hyporheic zone on nitrate production in a small mountain stream. Canadian Journal of Fisheries and Aquatic Sciences, 47, 2099–2111.

    Article  CAS  Google Scholar 

  • United Nations Environment Programme. (2008). The global atmospheric mercury assessment: sources, emissions and transport. Geneva: United Nations Environment Programme Chemicals Branch.

    Google Scholar 

  • US Environmental Protection Agency. (1997). Mercury study report to Congress, volume I: Executive summary. U.S. Environmental Protection Agency report EPA-452/R-97-003.

  • US Environmental Protection Agency. (2011). 2010 biennial national listing of fish advisories. U.S. Environmental Protection Agency report EPA-820-F-11-009.

  • US Geological Survey. (1999). National field manual for the collection of water-quality data. U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A1–A9.

  • Wentz D. A., Bonn B. A., Carpenter K. D., Hinkle S. R., Janet M. L., Rinella F. A., Uhrich M. A., Waite I. R., Laenen A., & Bencala K. E. (1998). Water quality in the Willamette Basin, Oregon, 1991–1995. U.S. Geological Survey Circular 1161.

  • Wiener, J. G., Krabbenhoft, D. P., Heinz, G. H., & Scheuhammer, A. M. (2003). Ecotoxicology of mercury, Chapter 16. In D. J. Hoffman, B. A. Rattner, G. A. Burton Jr., & J. Cairns Jr. (Eds.), Handbook of ecotoxicology (2nd ed., pp. 409–463). Boca Raton: CRC Press.

    Google Scholar 

  • Williams, D. D., Febria, C. M., & Wong, J. C. Y. (2010). Ecotonal and other properties of the hyporheic zone. Fundamental & Applied Limnology, 176, 349–364.

    Article  Google Scholar 

  • Zarnetske, J. P., Haggerty, R., Wondzell, S. M., & Baker, M. A. (2011). Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research, 116, G01025. doi:10.1029/2010JG001356.

    Google Scholar 

Download references

Acknowledgments

Marisa Cox was instrumental in designing and implementing the hyporheic sampling program and performed the major-ion analyses. This effort was funded by the USGS National Water-Quality Assessment Program, Toxic Substances Hydrology Program, and National Research Program. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hinkle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinkle, S.R., Bencala, K.E., Wentz, D.A. et al. Mercury and Methylmercury Dynamics in the Hyporheic Zone of an Oregon Stream. Water Air Soil Pollut 225, 1694 (2014). https://doi.org/10.1007/s11270-013-1694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1694-y

Keywords

Navigation