, 224:1657,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 13 Aug 2013

Electrochemical, Photochemical, and Photoelectrochemical Treatment of Sodium p-Cumenesulfonate

Abstract

The degradation of sodium p-cumenesulfonate (SCS) by electrochemical, photochemical, and photoelectrochemical methods in aqueous solution of NaClO4, NaCl, and NaClO has been studied. It was found that as a result of NaClO4 electroreduction and photodecomposition, the ions Cl and ClO3 are formed. These ions undergo transformations into radicals, mainly Cl, Cl2 •−, ClO•−, ClO2 •−, and ClO3 •−, due to electrochemical and photochemical reactions. It was shown that the interpretation of results of the studies over mineralization processes carried out in the presence of ClO4 cannot be adequate without taking into consideration the reduction of ClO4 to Cl and ClO3 . Therefore, previous works presented in the literature should be rediscussed on the basis of the new data. Photoelectrochemical mineralization of substrate in NaCl solution at the concentration of 16 mmol L−1 is comparable with the efficiency of the reaction in NaClO4 solution containing more than 8 mmol L−1 of NaClO. Total SCS mineralization was obtained in the photoelectrochemical reactor with a UV immersion lamp with a power 15 W in the period of 135 min and current intensity of 350 mA. In such conditions, the power consumption was about 1.2 kWh per g of TOC removed.