Skip to main content

Advertisement

Log in

Phytotoxicity of Long-Term Total Petroleum Hydrocarbon-Contaminated Soil—A Comparative and Combined Approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Petroleum hydrocarbon contamination of soil is an emerging environmental threat on the Earth due to possible toxic impact on different ecological receptors. The present study was mainly carried out to evaluate the phytotoxicity of long-term total petroleum hydrocarbon-contaminated soils by the toxicity end points obtained from three plant species Zea mays, Lactuca sativa L., and Cucumis sativus. The tested soil exerted phytotoxicity for all the evaluated end points of plants with dose-dependent relationship. The determined IC50 indicates inhibition in root elongation as the most sensitive toxicity end point for L. sativa L., while inhibition in cross-section area of meristematic zone as the most susceptible and inhibition in seed germination as the least susceptible end points for both Z. mays and C. sativus. The tested root morphometric parameters confirm their applicability as novel toxicity end points. In addition, microcalorimetric analysis confirmed the applicability of inhibition in metabolic heat emission rate as a toxicity end point. Microcalorimetry can be applied to determine the exerted phytotoxic effect on seedlings. The present combined approach concludes that the phytotoxicity of the tested soil is species-specific and varies as follows: Z. mays < C. sativus < L. sativa L. The findings of this study may have implications in planning comprehensive phytotoxicity assessment for hydrocarbon-contaminated soils or screening plant species for phytoremediation program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam, G., & Ducan, H. J. (2002). Influence on diesel fuel on seed germination. Environmental Pollution, 120, 363–370.

    Article  CAS  Google Scholar 

  • Al-Mutairi, N., Bufarsan, A., & Al-Rukaibi, F. (2008). Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon based fuels. Chemosphere, 74, 142–148.

    Article  CAS  Google Scholar 

  • Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Della Mico, E., Colombo, M., & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soil. Chemosphere, 57, 401–412.

    Article  CAS  Google Scholar 

  • Banks, M. K., & Schultz, K. E. (2005). Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water, Air, and Soil Pollution, 167, 211–219.

    Article  CAS  Google Scholar 

  • Bewley, J. D., & Black, M. (1994). Seeds: physiology of development and germination. New York: Plenum.

    Google Scholar 

  • Bojes, H. K., & Pope, P. G. (2007). Characterization of EPA’s 16 priority pollutants polycyclic aromatic hydrocarbons (PAHs) in tank bottom solid and associated contaminated soils at oil exploration and production sites in Texas. Regulatory Toxicology and Pharmacology, 47, 288–295.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (1997). Relaxation in a high-stress environment-the molecular bases of extensible cell walls and cell enlargement. The Plant Cell, 9, 1031–1041.

    Article  CAS  Google Scholar 

  • Criddle, R. S., & Hansen, L. D. (1999). Calorimetric methods for analysis of plant metabolism. In R. B. Kemp (Ed.), Handbook of thermal analysis of plant metabolism (pp. 711–763). Amsterdam: Elsevier.

    Google Scholar 

  • Dorn, P. B., Salanitro, J. P., & Wisniewski, H. L. (1998). Assessment of the acute toxicity of crude oils in soils using earthworms, microtox, and plants. Chemosphere, 37, 845–860.

    Article  CAS  Google Scholar 

  • Edelstein, M., Bradford, K. J., & Burger, D. W. (2001). Metabolic heat and CO2 production rates during germination of melon (Cucumis melo L.) seeds measured by microcalorimetry. Seed Science Research, 11, 265–272.

    CAS  Google Scholar 

  • Eibes, G., Cajthaml, T., Moreira, M. T., Feijoo, G., & Lema, J. M. (2006). Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 64, 408–414.

    Article  CAS  Google Scholar 

  • Frische, T. (2003). Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Environmental Pollution, 121, 103–113.

    Article  CAS  Google Scholar 

  • Hansen, L. D., Hopkin, M. S., & Cridle, R. S. (1997). Plant calorimetry: a window to plant physiology and ecology. Thermochimica Acta, 3133, 1–15.

    Article  Google Scholar 

  • Inckot, R. C., Santos, G. O., Souza, L. A. D., & Bona, C. (2011). Germination and development of Mimosa pilulifera in petroleum-contaminated soil and bioremediated soil. Flora, 206, 261–266.

    Article  Google Scholar 

  • ISO. (1993b). ISO 11269–1. Soil quality: determination of the pollutants effect on soil flora. Part 1. Method for the measurement of inhibition of root growth. International Organization for Standardization, Geneva.

  • Kaneko, S., Inagaki, M., & Morishita, T. (2010). A simple method for the determination of nitrate in potassium chloride extracts from forest soils. 19th World congress of soil science, soil solution for a changing world, Brisbane, Australia, Published on DVD.

  • Kazi, T. G., Jamali, M. K., Arain, M. B., Afridi, H. I., Jalbani, N., Sarfraz, R. A., & Ansari, R. (2009). Evaluation of an ultrasonic acid digestion procedure for total heavy metals. Journal of Hazardous Materials, 161, 1391–1398.

    Article  CAS  Google Scholar 

  • Koponen, T. H., Jaakkola, T., Keina, M. M., Toivola, N., Kaipainen, S., Tuomainen, J., Servomaa, K., & Martikainen, J. P. (2006). Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biology and Biochemistry, 38, 1861–1871.

    Article  CAS  Google Scholar 

  • Kummerova, M., Zezulka, S., Babula, P., & Vanova, L. (2013). Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Chemosphere, 90, 665–673.

    Article  CAS  Google Scholar 

  • Kupidlowska, E., Gniazdowska, A., Stepien, J., Corbineau, F., Vinel, D., Skoczowski, A., Janeczko, A., & Bogatek, R. (2006). Impact of sunflower (Helianthus annuus L.) extracts upon reserve mobilization and energy metabolism in germinating mustard (Sinapis alba L.) seeds. Journal of Chemical Ecology, 32, 2569–2583.

    Article  CAS  Google Scholar 

  • Leitgib, L., Kalman, J., & Gruize, K. (2007). Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere, 66, 428–434.

    Article  CAS  Google Scholar 

  • Liebeg, E. W., & Cutright, T. J. (1999). The investigation of enhanced bioremediation through the addition of macro and micronutrients in a PAH contaminated soil. International Biodeterioration and Biodegradation, 44, 55–64.

    Article  CAS  Google Scholar 

  • Liste, H. H., & Prutz, I. (2006). Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere, 62, 1411–1420.

    Article  CAS  Google Scholar 

  • Loehr, R. C., & Webster, M. T. (1996). Performance of long-term, field-scale bioremediation process. Journal of Hazardous Materials, 50, 105–228.

    Article  CAS  Google Scholar 

  • Loibner, A., Szolar, O., Braun, R., & Hirmann, D. (2003). Ecological assessment and toxicity screening in contaminated land analysis. In K. C. Thompson & C. P. Nathanail (Eds.), Chemical analysis of contaminated land (pp. 29–267). Oxford: Blackwell.

    Google Scholar 

  • Maila, M. P., & Cloete, T. E. (2002). Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Biodeterioration and Biodegradation, 50, 107–113.

    Article  CAS  Google Scholar 

  • Masakorala, K., Turner, A., & Brown, M. T. (2010). Toxicity of synthetic surfactants to the marine macroalga, Ulva lactuca. Water, Air, and Soil Pollution, 218, 283–291.

    Article  Google Scholar 

  • Mehlich, A. (1984). Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communication in Soil Science and Plant Analysis, 15, 1409–1416.

    Article  CAS  Google Scholar 

  • Merkl, N., Schultze-Kraft, R., & Infante, C. (2005). Phytoremediation of petroleum-contaminated soils in the tropics-assessment of tropical grasses and legumes for enhancing oil-degradation. Water, Air, and Soil Pollution, 165, 195–209.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis Part 2, 2nd ed., A.L. Page et al., Ed. Agronomy. 9:961–1010. American Society of Agriculture, Inc. Madison, WI.

  • OECD (Organization for Economic Cooperation and Development). (2000). Proposal for upgrading guidelines 208: terrestrial (non-target) plant test 208A- seedling emergence and seedling growth test. European committee, Paris, France. 208–209.

  • Ogboghodo, I. A., Iruaga, E. K., Osemwota, I. O., & Chokor, J. U. (2004). An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types-Forcados light and Escravos light. Environmental Monitoring and Assessment, 96, 143–152.

    Article  CAS  Google Scholar 

  • Oleszczuk, P., & Hollert, H. (2011). Comparison of sewage sludge toxicity to plants and invertebrates in three different soils. Chemosphere, 83, 502–509.

    Article  CAS  Google Scholar 

  • Pessarakli, M. (1999). Handbook of plant and crop stress. M. Dekker, New York.

  • Reynoso-Cuevas, L., Gallegos-Martinez, M. E., Cruz-Sosa, F., & Gutierrez-Rojas, M. (2008). In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soil. Bioresource Technology, 99, 6379–6385.

    Article  CAS  Google Scholar 

  • Silva, S., Santos, C., Matos, M., & Pinto-Carnide, O. (2012). Al toxicity mechanism in tolerant and sensitive rye genotypes. Environmental and Experimental Botany, 75, 89–97.

    Article  CAS  Google Scholar 

  • Smith, N. B., Criddle, R. S., & Hansen, L. D. (2000). Plant growth, respiration and environmental stress. Journal of Plant Biology, 27, 89–97.

    Google Scholar 

  • Tang, J., Lu, X., Sun, Q., & Zhu, W. (2012). Ageing of petroleum hydrocarbons in soil under different attenuation conditions. Agriculture, Ecosystem and Environment, 149, 109–117.

    Article  CAS  Google Scholar 

  • Ting, Y. P., Hu, H. L., & Tan, H. M. (1999). Bioremediation of petroleum hydrocarbons in soil microcosms. Resource and Environmental Biotechnology, 2, 197–218.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (1994). Using toxicity tests in ecological risk assessment, Publication 9345.0-051, Eco-Updata 2,1-4. U.S. Environmental Protection Agency, Washington, DC.

  • Vasudevan, N., & Rajaram, P. (2001). Bioremediation of oil sludge contaminated soil. Environment International, 26, 409–411.

    Article  CAS  Google Scholar 

  • Wang, W. (1991). Literature review on higher plants for toxicity testing. Water, Air, and Soil Pollution, 59, 381–400.

    Article  CAS  Google Scholar 

  • Xu, J. G., & Johnson, R. L. (1995). Root growth, microbial activity and phosphatase activity in oil-contaminated, remediated and uncontaminated soils planted to barley and field pea. Plant and Soil, 17, 3–10.

    Article  Google Scholar 

  • Zou, E., & Crawford, R. (1995). Effects of oxygen nitrogen and temperature on gasoline biodegradation in soil. Biodegradation, 6, 127–140.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the National Outstanding Youth Research Foundation of China (40925010), International Joint Key Project from the National Natural Science Foundation of China (40920134003), International Joint Key Project from the Chinese Ministry of Science and Technology (2010DFA12780 and 2009DFA92830), and the National Natural Science Foundation of China (41273092). KM acknowledges the receipt of a Chinese Government Scholarship from the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yao or Martin M. F. Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masakorala, K., Yao, J., Guo, H. et al. Phytotoxicity of Long-Term Total Petroleum Hydrocarbon-Contaminated Soil—A Comparative and Combined Approach. Water Air Soil Pollut 224, 1553 (2013). https://doi.org/10.1007/s11270-013-1553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1553-x

Keywords

Navigation