Skip to main content

Advertisement

Log in

Topographical Influences on the Spatial Distribution of Soil Mercury at the Catchment Scale

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Inorganic forms of mercury (Hg) can be converted by natural processes into methylmercury, a highly potent neurotoxin that can bioaccumulate in food chains and pose a risk to human health. Although Hg can enter aquatic environments through direct deposition, the predominant source derives from complex terrestrial cycling in nearby ecosystem vegetation and soils. Here we assess the spatial distribution of soil and litterfall Hg within two paired catchments of the Shenandoah National Park: the northwest-facing North Fork Dry Run (NFDR) and the southeast-facing Hannah Run (HR) catchments. Litterfall Hg concentrations were not significantly different between the NFDR and HR catchments. This may be attributable to the speciation of Hg (gaseous elemental Hg) that is involved in leaf-level accumulation. Significant differences in soil organic-layer Hg concentrations were observed between the two study catchments, with NFDR soils having roughly 50 % higher Hg concentrations than those from HR. These differences can be explained by differences in soil N content (and to a lesser extent soil C content) between catchments, as both elements exert a strong control of the amount of Hg bound in soils. We found no evidence that topographic aspect contributes to the spatial variability of soil Hg concentrations in these paired catchments, but did detect an influence from elevation. Soils located near ridges in mountainous catchments can contain relatively high Hg concentrations due to (1) lower turnover rates in soil organic matter pools, (2) enhanced deposition, and (3) limited mobilization of Hg from those areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amirbahman, A., Ruck, P. L., Fernandez, I. J., Haines, T. A., & Kahl, J. S. (2004). The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, USA. Water, Air, and Soil Pollution, 152, 313–331.

    Article  CAS  Google Scholar 

  • Arfstrom, C., Macfarlane, A. W., & Jones, R. D. (2000). Distributions of mercury and phosphorus in everglades soils from water conservation area 3A. Florida, USA. Water, Air, and Soil Pollution, 121, 133–159.

    Article  CAS  Google Scholar 

  • Barros, A. P., & Lettenmaier, D. P. (1994). Dynamic modeling of orographically induced precipitation. Reviews of Geophysics, 32, 265–284.

    Article  Google Scholar 

  • Beven, K. J., & Kirkby, M. J. (1979). A physically based variable contributing area model of basin hydrology. Hydrologic Science Bulletin, 24(1), 43–69.

    Article  Google Scholar 

  • Bishop, K., Lee, Y. H., Pettersson, C., & Allard, B. (1995). Methylmercury output from the Svartberget catchment in northern Sweden during spring flood. Water, Air, and Soil Pollution, 80(1–4), 445–454.

    Article  CAS  Google Scholar 

  • Bishop, K. H., Lee, Y., Munthe, J., & Dambrine, E. (1998). Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry, 40(2–3), 101–113.

    Article  Google Scholar 

  • Biswas, A., Blum, J. D., Klaue, B., & Keeler, G. J. (2007). Release of mercury from Rocky Mountain forest fires. Global Biogeochemical Cycles, 21(1), GB1002.

    Article  Google Scholar 

  • Blackwell, B. D., & Driscoll, C. T. (2011). Spatial patterns of mercury in canopy foliage and organic soils in Adirondack Park, NY. In The 10th international conference on mercury as a global pollutant, Halifax, Canada.

  • Boyer, E. W., Hornberger, G. M., Bencala, K. E., & McKnight, D. M. (1997). Response characteristics of DOC flushing in an alpine catchment. Hydrological Processes, 11, 1635–1647.

    Article  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle and size analysis of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Buffam, I., Galloway, J. N., Blum, L. K., & McGlathery, K. J. (2001). A stormflow/baseflow comparison of dissolved organic matter concentrations and bioavailability in an Appalachian stream. Biogeochemistry, 53, 269–306.

    Article  CAS  Google Scholar 

  • Burns, D. A., Riva-Murray, K., Bradley, P. M., Aiken, G. R., & Brigham, M. E. (2012). Landscape controls on total and methyl Hg in the upper Hudson River basin. New York, USA. Journal of Geophysical Research, 117, G01034. doi:10.1029/2011JG001812.

    Article  Google Scholar 

  • Cohen, M., Artz, R., Draxler, R., Miller, P., Poissant, L., Niemi, D., et al. (2004). Modeling the atmospheric transport and deposition of mercury to the Great Lakes. Environmental Research, 95, 247–265.

    Article  CAS  Google Scholar 

  • Converse, A. D., Riscassi, A. L., & Scanlon, T. M. (2010). Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow. Atmospheric Environment. doi:10.1016/j.atmosenv.2010.03.024.

  • Creed, I. F., & Band, L. E. (1998). Export of nitrogen from catchments within a temperate forest: evidence for a unifying mechanism regulated by variable source area dynamics. Water Resources Research, 34, 3105–3120. doi:10.1029/98WR01924.

    Article  CAS  Google Scholar 

  • Demers, J. D., Driscoll, C. T., Fahey, T. J., & Yavitt, J. B. (2007). Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecological Applications, 17(5), 1341–1351.

    Article  Google Scholar 

  • Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., Towse, J. E., et al. (2010). Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern US streams. Water Resources Research, 46, W07522. doi:10.1029/2009WR008351.

    Article  Google Scholar 

  • Driscoll, C. T., Han, Y., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., et al. (2007). Mercury contamination in forest and freshwater ecosystems in Northeastern United States. BioScience, 57(1), 17–28.

    Article  Google Scholar 

  • EPA. (1996). Method 1669: sampling ambient water for trace metals at EPA water quality criteria levels. Washington, DC: EPA.

    Google Scholar 

  • Engle, M. A., Kolker, A., Mose, D. E., East, J. A., & McCord, J. D. (2008). Summary of mercury and trace element precipitation results from the Culpeper, Virginia, Mercury Deposition Network site (VA-08), 2002–2006: U.S. Geological Survey Open File Report 2008–1232.

  • Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johnson, D. W., Lindberg, S. E., & Coleman, J. S. (2003). Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37, 1613–1622.

    Article  CAS  Google Scholar 

  • Ericksen, J. A., & Gustin, M. S. (2004). Foliar exchange of mercury as a function of soil and air mercury concentrations. Science of the Total Environment, 324, 271–279.

    Article  CAS  Google Scholar 

  • Ericksen, J. A., Gustin, M. S., Xin, M., Weisberg, P. J., & Fernandez, G. C. J. (2006). Air–soil exchange of mercury from background soils in the United States. Science of the Total Environment, 366, 851–863.

    Article  CAS  Google Scholar 

  • Fang, F., Wang, Q., & Li, J. (2001). Atmospheric particulate mercury concentration and its dry deposition flux in Changchun City, China. Science of the Total Environment, 281, 229–236.

    Article  CAS  Google Scholar 

  • Fitzgerald, W. F. (1995). Is mercury increasing in the atmosphere—the need for an atmospheric mercury network (AMNET). Water, Air, and Soil Pollution, 80, 245–254.

    Article  CAS  Google Scholar 

  • Freeze, R. A. (1972). Role of subsurface flow in generating surface runoff, 2, upstream source areas. Water Resources Research, 8(10), 1273–1283.

    Google Scholar 

  • Friedli, H. R., Radke, L. F., Payne, N. J., McRae, D. J., Lynham, T. J., & Blake, T. W. (2007). Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada. Journal of Geophysical Research, 112, G01004. doi:10.1029/2005JG000061.

    Article  Google Scholar 

  • Gathright, T. M. I. (1976). Geology of the Shenandoah National Park, Virginia. Charlottesville: Virginia Division of Mineral Resources.

    Google Scholar 

  • Grigal, D. F., Kolka, R. K., Fleck, J. A., & Nater, E. A. (2000). Mercury budget of an upland-peatland watershed. Biogeochemistry, 50, 95–109.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: a review. Environmental Reviews, 10, 1–39.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2003). Mercury sequestration in forests and peatlands: a review. Journal of Environmental Quality, 32, 393–405.

    CAS  Google Scholar 

  • Grimaldi, C., Grimaldi, M., & Guedron, S. (2008). Mercury distribution in tropical soil profiles related to origin of mercury and soil processes. Science of the Total Environment, 401, 121–129.

    Article  CAS  Google Scholar 

  • Grimm, J. W., & Lynch, J. A. (2004). Enhanced wet deposition estimates using modeled precipitation inputs. Environmental Monitoring and Assessment, 90, 243–268.

    Article  Google Scholar 

  • Gustin, M. S., & Stamenkovic, J. (2005). Effect of watering and soil moisture on mercury emissions from soils. Biogeochemistry, 76, 215–232.

    Article  CAS  Google Scholar 

  • Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G., & Kim, K. H. (1995). Foliar exchange of mercury-vapor: evidence for a compensation point. Water, Air, and Soil Pollution, 80(4), 5034–5040.

    Article  Google Scholar 

  • Hewlett, J. D., & Hibbert, A. R. (1967). Factors affecting the response of small watersheds to precipitation in humid areas. In W. E. Sopper & W. H. Lull (Eds.), International symposium on forest hydrology (pp. 275–290). New York: Pergamon.

    Google Scholar 

  • Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., et al. (2002). Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environmental Science & Technology, 36, 5034–5040.

    Article  CAS  Google Scholar 

  • Hope, B. K. (2005). A mass budget for mercury in the Willamette River Basin. Oregon, USA, Water, Air, and Soil Pollution, 161, 365–382.

    Article  CAS  Google Scholar 

  • Johnson, K. B., Haines, T. A., Kahl, J. S., Norton, S. A., Amirbahman, A., & Sheehan, K. D. (2007). Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine. Environmental Monitoring and Assessment, 126, 55–67.

    Article  CAS  Google Scholar 

  • Kamman, N. C., & Engstrom, D. R. (2002). Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 210Pb dated sediment cores. Atmospheric Environment, 36, 1599–1609.

    Article  CAS  Google Scholar 

  • Kolker, A., Engle, M. A., Orem, W. H., Bunnell, J. E., Lerch, H. E., Krabbenhoft, D. P., et al. (2008). Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: a combined approach to sampling and analysis. Geostandards and Geoanalytical Research, 32(3), 279–293.

    Article  CAS  Google Scholar 

  • Lawrence, J. E., & Hornberger, G. M. (2007). Soil moisture variability across climate zones. Geophysical Research Letters, 34, L20402. doi:10.1029/2007GL031382.

    Article  Google Scholar 

  • Leonard, T. L., Taylor, G. E., Jr., Gustin, M. S., & Fernandez, G. C. J. (1998). Mercury and plants in contaminated soils: 1, uptake, partitioning, and emission to the atmosphere. Environmental Toxicology and Chemistry, 17(10), 2063–2071.

    Article  CAS  Google Scholar 

  • Lin, C., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33(13), 2067–2079.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., & Owens, J. G. (1993). Throughfall studies of deposition to forest edges and gaps in montane ecosystems. Biogeochemistry, 19(3), 173–194.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., & Stratton, W. J. (1998). Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science & Technology, 32, 49–57.

    Article  CAS  Google Scholar 

  • Matilainen, T., Verta, M., Korhonen, H., Uusi-Rauva, A., & Niemi, M. (2001). Behavior of mercury in soil profiles: impact of increased precipitation, acidity, and fertilization on mercury methylation. Water, Air, and Soil Pollution, 125, 105–119.

    Article  CAS  Google Scholar 

  • Miller, E. K., Vanarsdale, A., Keeler, G. J., Chalmers, A., Poissant, L., Kamman, N. C., et al. (2005). Estimation and mapping of wet and dry mercury deposition across northeastern North America. Ecotoxicology, 14, 53–70.

    Article  CAS  Google Scholar 

  • Moore, C., & Carpi, A. (2005). Mechanisms of the emission of mercury from soil: role of UV radiation. Journal of Geophysical Research, 110(D24).

  • Natali, S. M., Sanudo-Wilhelmy, S. A., Norby, R. J., Zhang, H., Finzi, A. C., & Lerdau, M. T. (2008). Increased mercury in forest soils under elevated carbon dioxide. Oecologia, 158, 343–354.

    Article  Google Scholar 

  • Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R., et al. (2011). Mercury distributions across 14 U.S. forests. Part I: spatial patterns of concentrations in biomass, litter, and soils. Environmental Science & Technology, 45, 3974–3981.

    Article  CAS  Google Scholar 

  • Obrist, D., Johnson, D. W., & Lindberg, S. E. (2009). Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences, 6, 765–777.

    Article  CAS  Google Scholar 

  • Olson, M. L., & DeWild, J. F. (1999). Techniques for the collection and species-specific analysis of low levels of mercury in water, sediment, and biota. Washington, DC: USGS.

    Google Scholar 

  • Pai, P., Niemi, D., & Powers, B. (2000). A North American inventory of anthropogenic mercury emissions. Fuel Processing Technology, 65–66, 101–115.

    Article  Google Scholar 

  • Pirrone, N., Keeler, G. J., & Nriagu, J. O. (1996). Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30, 2981–2987.

    Article  CAS  Google Scholar 

  • Pokharel, A. K., & Obrist, D. (2011). Fate of mercury in tree litter during decomposition. Biogeosciences, 8, 2507–2521.

    Article  CAS  Google Scholar 

  • Prestbo, E. M., & Gay, D. A. (2009). Wet deposition of mercury in the U.S. and Canada, 1996–2005: results and analysis of the NADP mercury deposition network (MDN). Atmospheric Environment, 43, 4223–4233.

    Article  CAS  Google Scholar 

  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter—a review. Chemosphere, 55, 319–331.

    Article  CAS  Google Scholar 

  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2000). Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces. Environmental Science & Technology, 34, 2418–2425.

    Article  CAS  Google Scholar 

  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2001). Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall. Atmospheric Environment, 35, 3453–3462.

    Article  CAS  Google Scholar 

  • Rea, A. W., Lindberg, S. E., Scherbatskoy, T., & Keeler, G. J. (2002). Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water, Air, and Soil Pollution, 133, 49–67.

    Article  CAS  Google Scholar 

  • Riscassi, A. L. (2011). Controls on streamwater dissolved and particulate mercury within three mid-Appalachian forested headwater catchments. Ph.D. thesis. University of Virginia, Charlottesville, VA, USA.

  • Riscassi, A. L., & Scanlon, T. M. (2011). Controls on stream water dissolved mercury in three mid-Appalachian forested headwater catchments. Water Resources Research, 47, W12512. doi:10.1029/2011WR010977.

    Article  Google Scholar 

  • Scanlon, T. M., Raffensperger, J. P., Hornberger, G. M., & Clapp, R. B. (2000). Shallow subsurface storm flow in a forested headwater catchment: observations and modeling using a modified TOPMODEL. Water Resources Research, 36(9), 2575–2586.

    Article  Google Scholar 

  • Schlüter, K. (2000). Review: evaporation of mercury from soils, an integration and synthesis of current knowledge. Environmental Geology, 39(3–4), 249–271.

    Article  Google Scholar 

  • Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury—an overview. Atmospheric Environment, 32(5), 809–822.

    Article  CAS  Google Scholar 

  • Schwesig, D., Ilgen, G., & Matzner, E. (1999). Mercury and methylmercury in upland and wetland acid forest soils of a watershed in NE-Bavaria, Germany. Water, Air, and Soil Pollution, 113, 141–154.

    Article  CAS  Google Scholar 

  • Schwesig, D., & Matzner, E. (2000). Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. Science of the Total Environment, 260, 213–223.

    Article  CAS  Google Scholar 

  • Sheehan, K. D., Fernandez, I. J., Kahl, J. S., & Amirbahman, A. (2006). Litterfall mercury in two forested watersheds at Acadia National Park, Maine. USA, Water, Air, and Soil Pollution, 170, 249–265.

    Article  CAS  Google Scholar 

  • Skyllberg, U., Xia, K., Bloom, P. R., Nater, E. A., & Bleam, W. F. (2000). Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects. Journal of Environmental Quality, 29, 855–865.

    Article  CAS  Google Scholar 

  • St. Louis, V., Rudd, J. W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R., Scott, K. J., et al. (2001). Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environmental Science & Technology, 35, 3089–3098.

    Article  CAS  Google Scholar 

  • Stamenkovic, J., & Gustin, M. S. (2009). Nonstomatal versus stomatal uptake of atmospheric mercury. Environmental Science & Technology, 43, 1367–1972.

    Article  CAS  Google Scholar 

  • Xu, X., Yang, X., Miller, D. R., Helble, J. J., Thomas, H., & Carley, R. J. (2000). A sensitivity analysis on the atmospheric transformation and deposition of mercury in north-eastern USA. Science of the Total Environment, 259, 169–181.

    Article  CAS  Google Scholar 

  • Yan, R., Liang, D. T., & Tay, J. H. (2003). Control of mercury vapor emissions from combustion flue gas. Environmental Science Pollution, 10, 399–407.

    Article  CAS  Google Scholar 

  • Young, J., Fleming, G., Townsend, P. & Foster, J. (2006). Vegetation of Shenandoah National Park in relation to environmental gradients. Final report v.1.1. Research technical report prepared for USDI, National Park Service. USGS/NPS Vegetation Mapping Program. 92pp.

  • Zhang, H., & Lindberg, S. E. (1999). Processes influencing the emission of mercury from soils: a conceptual model. Journal of Geophysical Research, 104(D17), 21889–21896.

    Article  CAS  Google Scholar 

  • Zhang, H., & Lindberg, S. E. (2001). Sunlight and iron(III)-induced photochemical production of dissolved gaseous elemental mercury in fresh water. Environmental Science & Technology, 35, 928–935.

    Article  CAS  Google Scholar 

  • Zhang, L., Wright, L. P., & Blanchard, P. (2009). A review of current knowledge concerning dry deposition of atmospheric mercury. Atmospheric Environment, 43(37), 5853–5864.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (EAR-0645697) and the University of Virginia, specifically through a grant from the late David A. Harrison III and family and the College of Arts & Sciences. Ami Riscassi, Amber Converse, and Kelly Hokanson contributed greatly to the field and laboratory aspects of study. We thank the numerous volunteers who helped with sample collection: Carlos Disla, Carol Yang, Amanda Schwantes, Becky Schwantes, Supriya Sudan, Alec Norman, Elizabeth Stoner, Karl Philippoff, and Raquel Martin. Others who assisted with this study include Aaron Mills, Meg Miller, John Porter, Susie Maben, and Alec Norman. Finally, we thank the National Park Service and Shenandoah National Park for their cooperation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd M. Scanlon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunda, T., Scanlon, T.M. Topographical Influences on the Spatial Distribution of Soil Mercury at the Catchment Scale. Water Air Soil Pollut 224, 1511 (2013). https://doi.org/10.1007/s11270-013-1511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1511-7

Keywords

Navigation