Skip to main content
Log in

Influence of Immobilization of Bacterial Cells and TiO2 on Phenol Degradation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We investigated the influence of immobilization of bacterial cells and photocatalytic material TiO2 on the degradation of phenol by conducting batch microcosm studies consisting of suspended, immobilized cells and immobilized TiO2 at various initial phenol concentrations (50–1,000 mg L−1). Results showed that both suspended and immobilized cells were concentration-dependent, exhibiting the increasing degradation rate with the concentration of up to 500 mg L−1 above which it declined. The degradation rate of 0.39–3.47 mg L−1 h−1 by suspended cells was comparable with those of the literature. Comparison of the degradation rates between suspended, immobilized cells and immobilized TiO2 revealed that immobilized cells achieved the highest degradation rate followed by immobilized TiO2 and suspended cells due to the toxicity of phenol at the high concentration of 1,000 mg L−1. This indicates that immobilization of bacterial cells or photocatalytic materials can serve a better alternative to offer the higher degradation efficiency at high phenol concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahamad, P. Y. A., & Kunhi, A. A. M. (2011). Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation, 22, 253–265.

    Article  Google Scholar 

  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. A. (2011). Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water, Air, and Soil Pollution, 215, 3–29.

    Article  CAS  Google Scholar 

  • Bandhyopadhyay, K., Das, D., Bhattacharyya, P., & Maiti, B. R. (2001). Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate. Biochemical Engineering Journal, 8, 179–186.

    Article  CAS  Google Scholar 

  • Banerjee, A., & Ghoshal, A. K. (2010). Phenol degradation by Bacillus cereus: pathway and kinetic modeling. Bioresource Technology, 101, 5501–5507.

    Article  CAS  Google Scholar 

  • Banerjee, A., & Ghoshal, A. K. (2011). Phenol degradation performance by isolated Bacillus cereus immobilized in alginate. International Biodeterioration & Biodegradation, 65, 1052–1060.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Chen, S. C., Fingas, M., & Kao, C. M. (2010). Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. Journal of Hazardous Materials, 177, 856–863.

    Article  CAS  Google Scholar 

  • Chen, Y. M., Lin, T. F., Huang, C., Lin, J. C., & Hsieh, F. M. (2007). Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. Journal of Hazardous Materials, 148, 660–670.

    Article  CAS  Google Scholar 

  • Chiavola, A., Baciocchi, R., & Barducci, F. (2010). 3-chlorophenol biodegradation in a sequencing batch reactor: kinetic study and effect of the filling time. Water, Air, and Soil Pollution, 212, 219–229.

    Article  CAS  Google Scholar 

  • Chiou, C. H., Wu, C. Y., & Juang, R. S. (2008). Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Separation and Purification Technology, 62, 559–564.

    Article  CAS  Google Scholar 

  • Chung, T. P., Tseng, H. Y., & Juang, R. S. (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochemistry, 38, 1497–1507.

    Article  CAS  Google Scholar 

  • Heipieper, H. J., Keweloh, H., & Rehm, H. J. (1991). Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Applied and Environmental Microbiology, 57, 1213–1217.

    CAS  Google Scholar 

  • Hsieh, F. M., Huang, C., Lin, T. F., Chen, Y. M., & Lin, J. C. (2008). Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation. Process Biochemistry, 43, 83–92.

    Article  CAS  Google Scholar 

  • Keweloh, H., Weyrauch, G., & Rehm, H. J. (1990). Phenol-induced membrane changes in free and immobilized Escherichia coli. Applied Microbiology and Biotechnology, 33, 66–71.

    Article  CAS  Google Scholar 

  • Li, Y., Li, J., Wang, C., & Wang, P. (2010). Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresource Technology, 101, 6740–6744.

    Article  CAS  Google Scholar 

  • Liu, Q. S., Zheng, T., Wang, P., Jiang, J. P., & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157, 348–356.

    Article  CAS  Google Scholar 

  • Mollaei, M., Abdollahpour, S., Atashqahi, S., Abbasi, H., Masoomi, F., Rad, I., et al. (2010). Enhanced phenol degradation by Pseudomonas sp. SA01: gaining insight into the novel single and hybrid immobilizations. Journal of Hazardous Materials, 175, 284–292.

    Google Scholar 

  • Pardeshi, S. K., & Patil, A. B. (2008). A simple route for photocatalytic degradation of phenol in aqeous zinc oxide suspension using solar energy. Solar Energy, 82, 700–705.

    Google Scholar 

  • Saez, J. M., Benimeli, C. S., & Amoroso, M. J. (2012). Lindane removal by pure and mixed cultures of immobilized actinobacteria. Chemosphere, 89, 982–987.

    Article  CAS  Google Scholar 

  • Salah, N. H., Bouhelassa, M., Bekkouche, S., & Boultif, A. (2004). Study of photocatalytic degradation of phenol. Desalination, 166, 347–354.

    Article  CAS  Google Scholar 

  • Santos, V. L. D., Monteiro, A. D. S., Braga, D. T., & Santoro, M. M. (2009). Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents. Journal of Hazardous Materials, 161, 1413–1420.

    Article  Google Scholar 

  • Saravanan, P., Pakshirajan, K., & Saha, P. (2009). Degradation of phenol by TiO2-based heterogeneous photocatalysts in presence of sunlight. Journal of Hydro-environment Research, 3, 45–50.

    Article  Google Scholar 

  • Saritha, P., Raj, D. S. S., Aparna, C., Laxmi, P. N. V. L., Himabindu, V., & Anjaneyulu, Y. (2009). Degradative oxidation of 2,4,6 trichlorophenol using advanced oxidation processes—a comparative study. Water, Air, and Soil Pollution, 200, 169–179.

    Article  CAS  Google Scholar 

  • Shi, Y. J., Wang, X. H., Qi, Z., Diao, M. H., Gao, M. M., Xing, S. F., et al. (2011). Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules. Journal of Hazardous Materials, 191, 103–109.

    Article  CAS  Google Scholar 

  • Shourian, M., Noghabi, K. A., Zahiri, H. S., Bagheri, T., Karballaei, G., Mollaei, M., et al. (2009). Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination, 246, 577–594.

    Article  CAS  Google Scholar 

  • Tryba, B., Morawski, A. W., Inagaki, M., & Toyoda, M. (2006). The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts. Applied Catalysis B: Environmental, 63, 215–221.

    Article  CAS  Google Scholar 

  • Tsai, S. Y., & Juang, R. S. (2006). Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365. Journal of Hazardous Materials, B138, 125–132.

    Article  Google Scholar 

  • Yang, C. F., & Lee, C. M. (2007). Enrichment, isolation, and characterization of phenol-degrading Pseudomonas resinovorans strain P-1 and Brevibacillus sp. Strain P-6. International Biodeterioration & Biodegradation, 59, 206–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the Ministry of Knowledge and Economy, Republic of Korea, under the green manufacturing program on semiconductor and display industry supervised by the National IT Industry Promotion Agency (NIPA-B1100-1101-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ju Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, MR., Kim, DJ., Choi, JW. et al. Influence of Immobilization of Bacterial Cells and TiO2 on Phenol Degradation. Water Air Soil Pollut 224, 1473 (2013). https://doi.org/10.1007/s11270-013-1473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1473-9

Keywords

Navigation