Skip to main content
Log in

Bioavailability and Analytical Measurement of Copper Residuals in Sediments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Analytical measurements are commonly used to screen for toxicity or lack of toxicity from sediment-associated copper. Comparisons of analytical measurements with toxicological responses can be useful for determining the practicality of analytical measurements for assessing the toxicity of copper in sediments. The purpose of this research was to determine the utility of method detection limits (MDLs; i.e., minimum concentration of an analyte such as copper that can be measured with 99 % confidence with a specific analytical method and matrix) to predict the bioavailability of copper in five different sediments. The specific objectives of this research were to (1) select and characterize five sediments with different characteristics, (2) amend and measure a range of copper concentrations in the five sediments to determine MDLs and bioavailability of copper amendments in those sediments, (3) discern relationships with sediment characteristics to MDLs and bioavailability of copper in the five sediments, and (4) compare MDLs and observed toxicity to Hyalella azteca Saussure as an indicator of copper bioavailability in the five sediments. The lowest copper concentrations that elicited an observable adverse effect ranged from 15 to 550 mg Cu/kg, and the MDLs ranged from 1.5 to 6 mg Cu/kg. The MDLs and measured copper concentrations were not adequately predictive of the bioavailability and toxicity of copper in the five sediments. No adverse effects were observed for H. azteca exposed for 10 days to the sediment from California with simultaneously extractable metals > acid-volatile sulfides. Since the lowest observed effects concentrations of copper in the five sediments ranged two orders of magnitude, the National Oceanic and Atmospheric Administration screening values (threshold and probable effect levels) were not predictive of H. azteca responses to the copper-amended sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acar, O. (2006). Determination of cadmium, chromium, copper, and lead in sediments and soil samples by electrothermal atomic absorption spectrometry using zirconium containing chemical modifiers. The Japan Society for Analytical Chemistry, 22, 731–735.

    CAS  Google Scholar 

  • Allen, H. E., Gomgmin, F., & Deng, B. (1993). Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 12, 1441–1453.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Mattson, V. R., Leonard, E. N., West, C. W., & Bennett, J. L. (1993). Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid-volatile sulfide. Environmental Toxicology and Chemistry, 12, 315–320.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Thomas, N. A., Di Toro, D. M., Hansen, D. J., Hanony, J. D., Berry, W. J., Swartz, R. C., Hoke, R. A., Garrison, W. A., Allen, H. E., & Zabra, C. S. (1994). Assessing potential bioavailability of metals in sediments: a proposed approach. Environmental Management, 13, 331–337.

    Article  Google Scholar 

  • American Public Health Association (APHA). (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Bailey, G. W., & White, J. L. (1964). Review of adsorption of organic pesticides by soil colloids, with implications concerning pesticide bioactivity. Journal of Agricultural and Food Chemistry, 12, 324–332.

    Article  CAS  Google Scholar 

  • Besser, J. M., Brumbaugh, W. G., May, T. W., & Ingersoll, C. G. (2003). Effects of organic amendments on the toxicity and bioavailability of cadium and copper in spiked formulated sediments. Environmental Toxicology and Chemistry, 22(3), 805–815.

    Article  CAS  Google Scholar 

  • Blake, G. R. (1965). Bulk density. In C. A. Black (Ed.), Methods of soil analysis: part 1 (2nd ed., pp. 107–123). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Buchman, M. F. (2008). NOAA screening quick reference tables, NOAA OR&R report 08–1. Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration

  • Burton, G. A. (1991). Assessing the toxicity of freshwater sediments. Environmental Toxicology and Chemistry, 10, 1585–1627.

    Article  CAS  Google Scholar 

  • Cairns, M. A., Nebeker, A. V., Gakstatter, J. N., & Griffis, W. L. (1984). Toxicity of copper-spiked sediments to freshwater invertebrates. Environmental Toxicology and Chemistry, 3, 435–445.

    Article  CAS  Google Scholar 

  • Chapman, P. M., William, A. J., & Green, A. (1998). Appropriate applications of sediment quality values for metals and metalloids. Journal of Environmental Science and Technology, 33(22), 3937–3941.

    Google Scholar 

  • Creed, J., Martin, T., & O’Dell, J. (1994). Method 200.9 determination of trace elements by stabilized temperature graphite furnace atomic absorption, revision 2.2. Environmental Monitoring Systems Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH, 45268

  • Di Toro, D. M., Mahony, J. J., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., & Redmend, M. S. (1990). Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environmental Toxicology and Chemistry, 9, 1487–1502.

    Article  Google Scholar 

  • Deaver, E., & Rodgers, J. H., Jr. (1996). Measuring bioavailable copper using anodic stripping voltammetry. Environmental Toxicology and Chemistry, 15(11), 1925–1930.

    Article  CAS  Google Scholar 

  • de March, B. G. E. (1981). Hyalella azteca (Saussure). In S. G. Lawrence (Ed.), Manual for the culture of selected freshwater invertebrates (pp. 61–77). Ottawa: Department of Fisheries and Oceans.

    Google Scholar 

  • Enzweiler, J., & Vendemiatto, M. (2004). Analysis of sediments and soils by x-ray fluorescence spectrometry using matrix corrections based on fundamental parameters. Geostandards Geoanalytical Resources., 28, 103–112.

    Article  CAS  Google Scholar 

  • Flemming, C. A., & Trevors, J. T. (1989). Copper toxicity and chemistry in the environment: a review. Water, Air, and Soil Pollution, 44, 143–158.

    Article  CAS  Google Scholar 

  • Gallagher, J., Duke, B., & Rodgers, J. H., Jr. (2005). Responses of Hyalella azteca and Ceriodaphnia to reservoir sediments following chelated copper herbicide applications. Journal of Aquatic Plant Management, 43, 95–99.

    Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In C. A. Black (Ed.), Methods of soil analysis: part 1 (2nd ed., pp. 383–410). Madison: American Society of Agronomy.

    Google Scholar 

  • Gillis, A. C., & Birch, G. F. (2006). Investigation of anthropogenic trace metals in sediments of Lake Illawarra, New South Wales. Australian Journal of Earth Sciences, 53, 523–539.

    Article  CAS  Google Scholar 

  • Hoss, H., Haitzer, M., Traunspurger, W., Gratzer, H., Ahlf, W., & Steinberg, C. (1997). Influence of particle size distribution and content of organic matter on the toxicity of copper in sediment bioassays using Caenorhabditis elegans (Nematoda). Water, Air, and Soil Pollution, 99, 689–695.

    CAS  Google Scholar 

  • Huggett, D. B., Gillespie, W. B., & Rodgers, J. H., Jr. (1999). Copper bioavailability in Steilacoom Lake sediments. Archives of Environmental Contamination and Toxicology, 36, 120–123.

    Article  CAS  Google Scholar 

  • Johnson, B. M., Chao, M. M., Tedrow, O. R., McQueen, A. D., & Rodgers, J. H., Jr. (2008). Responses of Lepomis macrochirus, Pimephales promelas, Hyalella azteca, Ceriodaphnia dubia, and Daphnia magna to exposures of Algimycin® PWF and copper sulfate pentahydrate. Journal of Aquatic Plant Management, 46, 176–183.

    Google Scholar 

  • Jones, R. P., Hassan, S. M., & Rodgers, J. H., Jr. (2008). Influence of contact duration on sediment-associated copper fractionation and bioavailability. Ecotoxicology and Environmental Safety, 71, 104–116.

    Article  CAS  Google Scholar 

  • Kimbrough, D., & Wakakuwa, J. (1993). Method detection limits in solid waste analysis. Environmental Science & Technology, 27, 2692–2699.

    Article  CAS  Google Scholar 

  • Kubitz, J. A., Lewek, E. C., Besser, J. M., Drake, J. B., III, & Giesy, J. P. (1995). Effects of copper-contaminated sediments on Hyalella azteca, Daphnia magna, and Ceriodaphnia dubia: survival, growth, and enzyme inhibition. Archives of Environmental Contamination and Toxicology, 29, 97–103.

    Article  CAS  Google Scholar 

  • Laing, G. D., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behavior in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Leonard, E. N., Cotter, A. M., & Ankley, G. T. (1996). Modified diffusion method for analysis of acid volatile sulfides and simultaneously extracted metals in freshwater sediments. Environmental Toxicology and Chemistry, 15(9), 1479–1481.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Milani, D., Reynoldson, T. B., Borgmann, U., & Kolasa, J. K. (2003). The relative sensitivity of four benthic invertebrates to metal spiked-sediment exposures and application to contaminated field sediment. Environmental Toxicology and Chemistry, 22(4), 845–854.

    Article  CAS  Google Scholar 

  • Murray-Gulde, C. L., Heatley, J. E., Schwartzman, A. L., & Rodgers, J. H., Jr. (2002). Algicidal effectiveness of Clearigate, Curtrine-Plus, and copper sulfate and margins of safety associated with their use. Archives of Environmental Contamination and Toxicology, 43, 19–27.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1986). Total carbon, organic carbon, and organic matter. In W. C. Black (Ed.), Methods of soil analysis, part 1 (pp. 539–568). Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Plumb, R. H. Jr. (1981) Procedures for handling and chemical analysis of sediment and water samples. Technical Report EPA/CE-18-1. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station

  • SAS Institute Inc. (2010). SAS/STAT user’s guide, SAS 9.2. North Carolina: SAS Institute Inc.

  • Suedel, B. C., & Rodgers, J. H., Jr. (1991). Variability of bottom sediment characteristics of the continental United States. Water Resources Bulletin, 27, 101–109.

    Article  CAS  Google Scholar 

  • Suedel, B. C., Deaver, E., & Rodgers, J. H., Jr. (1996). Experimental factors that may affect toxicity of aqueous and sediment-bound copper to freshwater organisms. Archives of Environmental Contamination and Toxicology, 30, 40–46.

    Article  CAS  Google Scholar 

  • Teasdale, P. R., Apte, S. C., Ford, P. W., Batley, G. E., & Koehnken, L. (2003). Geochemical cycling and speciation of copper in waters and sediments of Macquarie Harbour, Western Tasmania. Estuarine, Coastal and Shelf Science, 57, 475–487.

    Article  CAS  Google Scholar 

  • US EPA. (1996). Method 3050b: acid digestion of sediments, sludges, and soil, revision 2. United States Environmental Protection Agency. http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3050b.pdf. Accessed 23 May 2011.

  • US EPA. (2000). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064 Duluth, MN: United States Environmental Protection Agency.

Download references

Acknowledgments

The authors would like to thank Burton Suedel, James Castle, and the anonymous reviewers for their helpful comments. The authors are grateful for the financial support provided by the Lonza Group Ltd., and aid from Brian Lind, Burton Suedel, Curt Cress, and Harry Knight with sediment sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben E. Willis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willis, B.E., Alley, B.L. & Rodgers, J.H. Bioavailability and Analytical Measurement of Copper Residuals in Sediments. Water Air Soil Pollut 224, 1423 (2013). https://doi.org/10.1007/s11270-012-1423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1423-y

Keywords

Navigation