Skip to main content
Log in

Granulometry and Surfactants, Key Factors in Desorption and Biodegradation (T. versicolor) of PAHs in Soil and Groundwater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

High hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) is the most limiting factor for the remediation of polluted soils and aquifers. The present study analyzes the effect of three nonionic surfactants (Tween 80, BS-400, and Gold Crew) and the granulometry of soil (1 %, 5 %, 10 %, and 20 % of clay and silt) on desorption of a PAH mixture (fluorene, phenanthrene, anthracene, and pyrene). As a general trend, decrease of fine material content and increase of surfactant concentration raises desorption. However, some particularities have to be considered depending on granulometry together with the surfactant applied. Furthermore, increase of fine material content tends to reduce the importance of the PAH properties, e.g., K ow and solubility, in desorption. To complete the remediation process, biodegradation by Trametes versicolor was tested with the surfactant Tween 80. Results indicate that a high concentration of surfactant does not affect the efficiency of fungus bioremediation. Nevertheless, high fine material content in soil/aquifer can reduce the degradation rate. Moreover, desorption and biodegradation used synergically guarantee better overall results in the remediation of soils polluted by PAH mixtures than other methods that separate desorption and remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcántara, M. T., Gómez, J., Pazos, M., & Sanromán, M. A. (2009). PAHs soil decontamination in two steps: desorption and electrochemical treatment. J Hazard Mat, 166, 462–468.

    Article  Google Scholar 

  • Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enz Microb Techn, 32, 78–91.

    Article  CAS  Google Scholar 

  • Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biot, 80, 723–736.

    Article  CAS  Google Scholar 

  • Bernal-Martinez, A., Carrère, H., Patureau, D., & Delgenès, J. P. (2005). Combining anaerobic digestion and ozonation to remove PAH from urban sludge. Process Biochem, 40, 3244–3250.

    Article  CAS  Google Scholar 

  • Blánquez, P., Casas, N., Font, X., Gabarrell, X., Sarrà, M., Caminal, G., & Vicent, T. (2004). Mecanism of textile metal dye biotransformation by Trametes versicolor. Water Res, 38, 2166–2172.

    Article  Google Scholar 

  • Borràs, E., Blánquez, P., Caminal, G., Sarrà, M., & Vicent, T. (2008). Trametes versicolor pellets production: low-cost medium and scale-up. Biochem Eng J, 42, 61–66.

    Article  Google Scholar 

  • Borràs, E., Caminal, G., Sarrà, M., & Novotný, C. (2010). Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biol Biochem, 42, 2087–2093.

    Article  Google Scholar 

  • Boyle, D., Wiesner, C., & Richardson, A. (1998). Factors affecting the degradation of polyaromatic hydrocarbons in soil by white-rot fungi. Soil Biol Biochem, 7, 873–882.

    Article  Google Scholar 

  • Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Industrial Microbiol Biotechnol, 19, 324–333.

    Article  CAS  Google Scholar 

  • Cheng, K. Y., & Wong, J. W. C. (2006). Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil–water system. Chemosphere, 62, 1907–1916.

    Article  CAS  Google Scholar 

  • Chu, W., & Chan, K. H. (2003). The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics. Science Total Environ, 307, 83–92.

    Article  CAS  Google Scholar 

  • Clark, K., & Keller, A. (2012). Investigation of two magnetic permanently confined micelle array sorbents using non-ionic and cationic surfactants for the removal of PAHs and pesticides from aqueous media. Water Air Soil Pollut. doi:10.1007/s11270-012-1138-0.

  • Collins, P. J., & Dobson, A. D. W. (1998). Oxidation of fluorene and phenanthrene by Mn(II) dependent peroxidase activity in whole cultures of Trametes (Coriolus) versicolor. Biotechnol Letters, 18, 801–804.

    Article  Google Scholar 

  • Dhenain, A., Mercier, G., Blais, J. F., & Bergeron, M. (2006). PAH removal from black sludge from aluminium industry by flotation using non-ionic surfactants. Environ Technol, 27, 1019–1030.

    Article  CAS  Google Scholar 

  • Edwards, D. A., Luthy, R. G., & Liu, Z. (1991). Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol, 25, 127–133.

    Article  CAS  Google Scholar 

  • European Environment Agency (EEA) (2000). Groundwater quality and quantity in Europe. Environmental assessment report no. 3. European Environment Agency, Copenhagen

  • Fabbri, D., Bianco Prevot, A., Zelano, V., Ginepro, M., & Pramauro, E. (2008). Removal and degradation of aromatic compounds from a highly polluted site by coupling soil washing with photocatalysis. Chemosphere, 71, 59–65.

    Article  CAS  Google Scholar 

  • Field, J. A., de Jong, E., Costa, G. F., & de Bont, J. A. M. (1992). Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white-rot fungi. Appl Environ Microbiol, 58, 2219–2226.

    CAS  Google Scholar 

  • Garon, D., Krivobok, S., Wouessidjew, D., & Seigle-Murandi, F. (2002). Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere, 47, 303–309.

    Article  CAS  Google Scholar 

  • Guha, P. R., Jaffe, C., & Peters, M. (1998). Solubilization of PAH mixtures by nonionic surfactant. Environ Sci Technol, 3, 930–954.

    Article  Google Scholar 

  • Holmberg, K., Jönsonn, B., Kronberg, B., & Lindman, B. (2002). Surfactants and polymers in aqueous solution (2nd ed.). Chichester: Wiley.

    Book  Google Scholar 

  • Jafvert, C. T., Patricia, L. V. H., & Heath, J. K. (1994). Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Res, 5, 1009–1017.

    Article  Google Scholar 

  • Karickhoff, S. W. (1984). Organic pollutant sorption in aquatic systems. J Hydr Eng, 110, 707–735.

    Article  Google Scholar 

  • Kim, I. S., & Park, J. (2001). Enhanced biodegradation of polycylic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl Geochemistry, 16, 1519–1528.

    Google Scholar 

  • Kim, H., Lindsay, K. S., & Pfaender, F. K. (2008). Enhanced mobilization of field contaminants soil-bound PAHs to the aqueous phase under anaerobic conditions. Water Air Soil Pollut, 189, 135–147.

    Article  CAS  Google Scholar 

  • Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F., & Zeikus, J. G. (1978). Factors influencing lignin metabolism by Phanerochaete chrysosporium. Archives Microbiol, 117, 277–285.

    Article  CAS  Google Scholar 

  • Kotterman, M. J. J., Rietberg, H. J., & Field, J. A. (1998). Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnol Bioeng, 57, 220–227.

    Article  CAS  Google Scholar 

  • Laha, S., Tansel, B., & Ussawarujikulchai, A. (2009). Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manage, 90, 95–100.

    Article  CAS  Google Scholar 

  • Lippold, H., Gottschalch, U., & Kupsch, H. (2008). Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed? Chemosphere, 70, 1979–1986.

    Article  CAS  Google Scholar 

  • Majcherczyk, A., Johannes, C., & Hutterman, A. (1998). Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol, 22, 335–341.

    Article  CAS  Google Scholar 

  • Martinez-Bofill, J., Corominas, J., Soler, A. (2008). Approach to the relationship between durability and petrological characteristics of weak rocks. In: II European Conference of the International Association for Engineering Geology. EuroEnGeo. The City and its Subterranean Environment, Ed. AEGAIN Asociación Española de Geología Aplicada a la Ingeniería and IAEG International Association for Engineering Geology (national groups of Spain, Portugal, France), Madrid, pp 1–6

  • Mougin, C. (2002). Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyclic Aromatoc Compounds, 22, 1011–1043.

    Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol, 60, 371–380.

    Article  Google Scholar 

  • Peng, S., Wu, W., & Chen, J. (2011). Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness. Chemosphere, 82, 1173–1177.

    Article  CAS  Google Scholar 

  • Providenti, M. A., Lee, H., & Trevors, J. T. (1993). Selected factors limiting the microbial degradation of recalcitrant compounds. J Industrial Microbiol, 12, 379–395.

    Article  CAS  Google Scholar 

  • Rodríguez-Escales, P. F., Sayara, T., Vicent, T., & Folch, A. (2012). Influence of soil granulometry on pyrene desorption in groundwater using surfactants. Water, Air Soil Poll, 223, 125–133.

    Article  Google Scholar 

  • Sack, U., & Fritsche, W. (1997). Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiol Ecol, 22, 77–83.

    Article  CAS  Google Scholar 

  • Sánchez-Martín, M. J., Dorado, M. C., del Hoyo, C., & Rodríguez-Cruz, M. S. (2008). Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. J Hazard Mat, 150, 115–123.

    Article  Google Scholar 

  • Sartoros, C., Yerushalmi, L., Béron, P., & Guiot, S. R. (2005). Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemosphere, 70, 1042–1050.

    Article  Google Scholar 

  • Schwarzenbach, R., & Giger, W. (1985). Behavior and fate of halogenated hydrocarbons in ground water. In C. H. Ward, W. Giger, & P. L. McCarty (Eds.), Ground water quality. New York: Wiley.

    Google Scholar 

  • Schwarzenbach, R., & Westall, J. (1981). Transport of nonpolar organic compounds from surface water to groundwater: laboratory sorption studies. Environ Sci Technol, 15, 1360–1367.

    Article  CAS  Google Scholar 

  • Skybová, T., Pribyl, M., Pocedic, J., & Hasal, P. (2011). Mathematical modeling of wastewater decolorization in a trickle-bed bioreactor. J Biotechnol. doi:10.1016/j.jbiotec.2011.08.027.

  • Teixeira, S. C. G., Lourenço-Ziolli, R., da Costa Marques, M., & Vidal Pérez, D. (2011). Study of pyrene adsorption on two Brazilian soils. Water, Air Soil Poll, 219, 297–301.

    Article  CAS  Google Scholar 

  • Tekere, M., Read, J. S., & Mattiason, B. (2005). Polycyclic aromatic hydrocarbons biodegradation in extracellular fluids and static batch cultures of selected sub-tropical white-rot fungi. J Biotechnol, 115, 367–377.

    Article  CAS  Google Scholar 

  • Tersahima, M., Tanaka, S., & Fukushima, M. (2003). Distribution behavior of pyrene to adsorbed humic acids on kaolin. J Environ Qual, 32, 591–598.

    Google Scholar 

  • Wariishi, H., Valli, K., & Gold, M. H. (1992). Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem, 267, 23,688–23,695.

    CAS  Google Scholar 

  • World Health Organization (1998). Guidelines for drinking-water quality. 2nd ed. Addendum to Vol. 2. Health criteria and other supporting information. Geneva

  • Zhao, B., Zhu, L., Li, W., & Chen, B. (2005). Solubilization and biodegradation of phenanthrene in mixed anionic–nonionic surfactant solutions. Chemosphere, 58, 33–40.

    Article  CAS  Google Scholar 

  • Zheng, Z., & Obbard, J. P. (2002). Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system. Water Res, 36, 2667–2672.

    Article  CAS  Google Scholar 

  • Zhou, W., & Zhu, L. (2008). Enhanced soil flushing of phenanthrene by anionic–nonionic mixed surfactant. Water Res, 42, 101–108.

    Article  CAS  Google Scholar 

  • Zhou, J., Jiang, W., Ding, J., Zhang, X., & Gao, S. (2007). Effect of Tween 80 and -cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white-rot fungi. Chemosphere, 70, 172–177.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the CICYT projects CGL2008-06373-C03-01 and CGL2011-29975-C04-01 from the Spanish Government, and projects 2009SGR00103 and 2009SGR1199 from the Catalan Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Folch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Escales, P., Borràs, E., Sarra, M. et al. Granulometry and Surfactants, Key Factors in Desorption and Biodegradation (T. versicolor) of PAHs in Soil and Groundwater. Water Air Soil Pollut 224, 1422 (2013). https://doi.org/10.1007/s11270-012-1422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1422-z

Keywords

Navigation