Skip to main content
Log in

Oxidation of Azo Dyes by H2O2 in Presence of Natural Pyrite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pyrite, FeS2, is the most common sulfide mineral. The aim of this work was to assess the oxidative ability of H2O2 in presence of natural pyrite by employing reactive black 5, acid red GR, and cationic red X-GRL as model pollutants. The effects of H2O2 dosage, pyrite loading, and initial pH on reaction were investigated. The results reveal that natural pyrite-promoted H2O2 has a great activity in the decoloration of azo dyes. About 85 % of reactive black 5 and acid red GR can be removed within 10 min when 0.3 mM H2O2 and 0.3 g/L pyrite are used with initial pH values ranging from 6.32 to 6.96. The discoloration efficiencies are demonstrated to be less sensitive to the initial solution pH value. Approximately 90 % of discoloration for reactive black 5 and acid red GR can be achieved when initial pH value ranges from 2 to 10. Ion leaching experiments show that high levels of ferrous iron and sulfate can be detected when natural pyrite is added to dye solution alone. To gain an understanding of the reaction mechanism and the role of natural pyrite takes in these processes, techniques including scanning electron microscope, X-ray diffraction, and X-ray photoelectron were employed to characterize the solid sample and ion leaching experiments were also carried out. Results indicate that the determined high levels of ions have resulted from the dissolution of FeSO4·H2O formed on the surface of pyrite and the homogeneous Fenton reaction initiated by ferrous iron in presence of H2O2 is mainly responsible for the observed fast color removal rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo, M. C., Faber, M. S., Tan, Y., Hamers, R. J., & Jin, S. (2012). Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. Nano Letters, 12(4), 1977–1982.

    Article  Google Scholar 

  • Ahlberg, E., Forssberg, K. S. E., & Wang, X. (1990). The surface oxidation of pyrite in alkaline solution. Journal of Applied Electrochemistry, 20(6), 1033–1039.

    Article  CAS  Google Scholar 

  • Arienzo, M. (1999). Oxidizing 2,4,6-trinitroluene with pyrite-H2O2 suspensions. Chemosphere, 39(10), 1629–1638.

    Article  CAS  Google Scholar 

  • Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., & Rodriguez, J. J. (2008). An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology and Biotechnology, 83(10), 1323–1338.

    Article  CAS  Google Scholar 

  • Borda, M., Elsetinow, A. R., Strongin, D., & Schoonen, M. (2003). A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochimica et Cosmochimica Acta, 67(5), 935–939.

    Article  CAS  Google Scholar 

  • Costa, R., Lelis, M., Oliveira, L., Fabris, J., Ardisson, J., Rios, R., et al. (2006). Novel active heterogeneous Fenton system based on Fe3 − x M x O4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials, 129(1–3), 171–178.

    Article  CAS  Google Scholar 

  • De León, M. A., Castiglioni, J., Bussi, J., & Sergio, M. (2008). Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process. Catalysis Today, 133–135, 600–605.

    Article  Google Scholar 

  • De Souza, W. F., Guimarães, I. R., Oliveira, L. C. A., Giroto, A. S., Guerreiro, M. C., & Silva, C. L. T. (2010). Effect of Ni incorporation into goethite in the catalytic activity for the oxidation of nitrogen compounds in petroleum. Applied Catalysis A: General, 381, 36–41.

    Article  Google Scholar 

  • Duesterberg, C. K., & Waite, T. D. (2006). Process optimization of Fenton oxidation using kinetic modeling. Environmental Science and Technology, 40(13), 4189–4195.

    Article  CAS  Google Scholar 

  • Frau, F. (2000). The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia. Mineralogical Magazine, 64(6), 995–1006.

    Article  CAS  Google Scholar 

  • Georgi, A., Schierz, A., Trommler, U., Horwitz, C. P., Collins, T. J., & Kopinke, F. D. (2007). Humic acid modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 72(1–2), 26–36.

    Article  CAS  Google Scholar 

  • Gissinger, P., Alnot, M., Ehrhardt, J.-J., & Behra, P. (1998). Surface oxidation of pyrite as a function of pH. Environmental Science and Technology, 32(19), 2839–2845.

    Article  Google Scholar 

  • Hsueh, C. L., Huang, Y. H., Wang, C. C., & Chen, C. Y. (2005). Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58(10), 1409–1414.

    Article  CAS  Google Scholar 

  • Jiao, J., Chen, L., Kuang, D., Gao, W., Feng, H., & Xia, J. (2011). Synthesis of FeS2 and Co-doped FeS2 films with the aid of supercritical carbon dioxide and their photoelectrochemical properties. RSC Advances, 1(2), 255.

    Article  CAS  Google Scholar 

  • Jorgensen, C. J., Jacobsen, O. S., Elberling, B., & Aamand, J. (2009). Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environmental Science and Technology, 43(13), 4851–4857.

    Article  Google Scholar 

  • Kang, M., Chen, F., Wu, S., Yang, Y., Bruggeman, C., & Charlet, L. (2011). Effect of pH on aqueous Se(IV) reduction by pyrite. Environmental Science and Technology, 45(7), 2704–2710.

    Article  CAS  Google Scholar 

  • Kim, E. J., & Batchelor, B. (2009). Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic. Environmental Science and Technology, 43(8), 2899–2904.

    Article  CAS  Google Scholar 

  • Kwan, W. P., & Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science and Technology, 37(6), 1150–1158.

    Article  CAS  Google Scholar 

  • Lee, Y. N., Lago, R. M., Fierro, J. L. G., & González, J. (2001). Hydrogen peroxide decomposition over Ln1 − x A x MnO3 (Ln = La or Nd and A = K or Sr) perovskites. Applied Catalysis A: General, 215(1–2), 245–256.

    Article  CAS  Google Scholar 

  • Matta, R., Hanna, K., & Chiron, S. (2007). Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Environmental Science and Technology, 385(1–3), 242–251.

    CAS  Google Scholar 

  • Matta, R., Hanna, K., Kone, T., & Chiron, S. (2008). Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH. Chemical Engineering Journal, 144(3), 453–458.

    Article  CAS  Google Scholar 

  • Menini, L., Pereira, M., Parreira, L., Fabris, J., & Gusevskaya, E. (2008). Cobalt- and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. Journal of Catalysis, 254(2), 355–364.

    Article  CAS  Google Scholar 

  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–50.

    Article  CAS  Google Scholar 

  • Pham, H. T., Kitsuneduka, M., Hara, J., & Suto, K. (2008). Trichloroethylene transformation by natural nineral pyrite: the deciding role of oxygen. Environmental Science and Technology, 42(19), 7470–7475.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84.

    Article  CAS  Google Scholar 

  • Prechthai, T., Parkpian, P., & Visvanathan, C. (2008). Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site. Journal of Hazardous Materials, 156(1–3), 86–94.

    Article  CAS  Google Scholar 

  • Sacchi, M., Galbraith, M. C., & Jenkins, S. J. (2012). The interaction of iron pyrite with oxygen, nitrogen and nitrogen oxides: a first-principles study. Physical Chemistry Chemical Physics: PCCP, 14(10), 3627–3633.

    Article  CAS  Google Scholar 

  • Tamura, H., Goto, K., Yotsuyanagi, T., & Nagayama, M. (1974). Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta, 21(4), 314–318.

    Article  CAS  Google Scholar 

  • Tizaoui, C., Karodia, N., & Aburowais, M. (2010). Kinetic study of the manganese-based catalytic hydrogen peroxide oxidation of a persistent azo-dye. Journal of Chemical Technology and Biotechnology, 85(2), 234–242.

    CAS  Google Scholar 

  • Todd, E. (2003). Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 67(5), 881–893.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of China (grant no. 41172210), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (no. PCRRY11013), and the Fundamental Research Funds for the Central Universities (no. 0400219188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Feng, Y. & Ma, L. Oxidation of Azo Dyes by H2O2 in Presence of Natural Pyrite. Water Air Soil Pollut 224, 1407 (2013). https://doi.org/10.1007/s11270-012-1407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1407-y

Keywords

Navigation