Skip to main content
Log in

Electrochemical Degradation of the Reactive Red 141 Dye Using a Boron-Doped Diamond Anode

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The electrochemical degradation of the Reactive Red 141 azo dye was done using a one-compartment filter-press flow cell with a boron-doped diamond anode. The response surface methodology (with a central composite design) was used to investigate the effect of current density (10–50 mA cm−2), pH (3–11), NaCl concentration ([NaCl]) (0–2.34 g L–1), and temperature (15–55 °C) on the system’s performance. The charge required for 90 % decolorization (Q 90), the fraction of chemical oxygen demand removal after 6 min of electrolysis (COD6), and the fraction of total organic carbon removal after 90 min of electrolysis (TOC90) were used to model the obtained results. The lowest values of Q 90 were attained at pH <4 in the presence of higher values of [NaCl] (>1.5 g L−1), due to the electrogeneration of active chlorine, present mainly as HClO. The value of COD6 was not affected by the solution pH, but increased with [NaCl] up to 1.5 g L−1. Higher temperatures (>40 °C) led to a decrease in COD6, as a consequence of side reactions. Higher values of TOC90, which can be reached only with strong oxidants (such as ·OH and Cl·), were efficiently attained at low [NaCl] values (<0.7 g L−1) in acidic solutions that inhibit the formation of ClO3 and ClO4 . Finally, the obtained results allow inferring that most probably the mineralization of the dye starts with an attack on the chromophore group, followed by the degradation of intermediate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrade, L. S., Tasso, T. T., Silva, D. L., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2009). On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the Reactive Orange 16 dye. Electrochimica Acta, 54, 2024–2030.

    Article  CAS  Google Scholar 

  • Anglada, A., Urtiaga, A., Ortiz, I., Mantzavinos, D., & Diamadopoulos, E. (2011). Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Research, 45, 828–838.

    Article  CAS  Google Scholar 

  • Aquino, J. M., Irikura, K., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2010). A comparison of electrodeposited Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes in the electrochemical degradation of the Direct Yellow 86 dye. Quimica Nova, 33, 2124–2129.

    Article  CAS  Google Scholar 

  • Aquino, J. M., Pereira, G. F., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2011). Electrochemical degradation of a real textile effluent using boron-doped diamond or β-PbO2 as anode. Journal of Hazardous Materials, 192, 1275–1282.

    Article  CAS  Google Scholar 

  • Aquino, J. M., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2010a). Electrochemical degradation of the Acid Blue 62 dye on a β-PbO2 anode assessed by the response surface methodology. Journal of Applied Electrochemistry, 40, 1751–1757.

    Article  CAS  Google Scholar 

  • Aquino, J. M., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2010b). Electrochemical degradation of the Reactive Red 141 dye on a β-PbO2 anode assessed by the response surface methodology. Journal of the Brazilian Chemical Society, 21, 324–330.

    Article  CAS  Google Scholar 

  • Aquino, J. M., Rodrigo, M. A., Rocha-Filho, R. C., Sáez, C., & Cañizares, P. (2012). Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes. Chemical Engineering Journal, 184, 221–227.

    Article  CAS  Google Scholar 

  • Baker, J. R., Milke, M. W., & Mihelcic, J. R. (1999). Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals. Water Research, 33, 327–334.

    Article  CAS  Google Scholar 

  • Cañizares, P., Beteta, A., Sáez, C., Rodríguez, L., & Rodrigo, M. A. (2008). Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied. Chemosphere, 72, 1080–1085.

    Article  Google Scholar 

  • Cañizares, P., Gadri, A., Lobato, J., Nasr, B., Paz, R., Rodrigo, M. A., et al. (2006). Electrochemical oxidation of azoic dyes with conductive-diamond anodes. Industrial & Engineering Chemical Research, 45, 3468–3473.

    Article  Google Scholar 

  • Cañizares, P., Lobato, J., Paz, R., Rodrigo, M. A., & Sáez, C. (2005). Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Research, 39, 2687–2703.

    Article  Google Scholar 

  • Cañizares, P., Louhichi, B., Gadri, A., Nasr, B., Paz, R., Rodrigo, M. A., et al. (2007). Electrochemical treatment of the pollutants generated in an ink-manufacturing process. Journal of Hazardous Materials, 146, 552–557.

    Article  Google Scholar 

  • Cañizares, P., Martínez, L., Paz, R., Sáez, C., Lobato, J., & Rodrigo, M. A. (2006). Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 81, 1331–1337.

    Article  Google Scholar 

  • Cañizares, P., Sáez, C., Sánchez-Carretero, A., & Rodrigo, M. A. (2009). Synthesis of novel oxidants by electrochemical technology. Journal of Applied Electrochemistry, 39, 2143–2149.

    Article  Google Scholar 

  • Carneiro, P. A., Oliveira, D. P., Umbuzeiro, G. A., & Zanoni, M. V. B. (2010). Mutagenic activity removal of selected disperse dye by photoeletrocatalytic treatment. Journal of Applied Electrochemistry, 40, 485–492.

    Article  CAS  Google Scholar 

  • Chen, B., Zhang, M., Chang, C., Ding, Y., Chen, W., & Hsueh, C. (2011). Deciphering azo dye decolorization characteristics by indigenous Proteus hauseri: chemical structure. Journal of the Taiwan Institute of Chemical Engineers, 42, 327–333.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38, 11–41.

    Article  Google Scholar 

  • Cheng, C. Y., & Kelsall, G. H. (2007). Models of hypochlorite production in electrochemical reactors with plate and porous anodes. Journal of Applied Electrochemistry, 37, 1203–1217.

    Article  CAS  Google Scholar 

  • Costa, C. R., Montilla, F., Morallón, E., & Olivi, P. (2010). Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: effect of current density, pH, and chloride ions. Electrochimica Acta, 54, 7048–7055.

    Article  Google Scholar 

  • Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Research, 42, 13–51.

    Article  CAS  Google Scholar 

  • Domínguez, J. R., González, T., Palo, P., Sánchez-Martín, J., Rodrigo, M. A., & Sáez, C. (2012). Electrochemical degradation of a real pharmaceutical effluent. Water, Air, and Soil Pollution, 223, 2685–2694.

    Article  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., & Greenberg, A. E. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Healthy Association.

    Google Scholar 

  • Férnandez, C., Larrechi, M. S., & Callao, M. P. (2010). An analytical overview of processes for removing organic dyes from wastewater effluents. Trends in Analytical Chemistry, 29, 1202–1211.

    Article  Google Scholar 

  • Ghernaout, D., Naceur, M. W., & Aouabed, A. (2011). On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination, 270, 9–22.

    Article  CAS  Google Scholar 

  • Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2010). Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environmental Science and Technology, 44, 6822–6828.

    Article  CAS  Google Scholar 

  • Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management, 83, 171–180.

    Article  CAS  Google Scholar 

  • Jara, C. C., & Fino, D. (2010). Cost optimization of the current density for electroxidation wastewater processes. Chemical Engineering Journal, 160, 497–502.

    Article  Google Scholar 

  • Kapalka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry formation and reactivity of free hydroxyl radicals on boron-doped diamond electrodes. Electrochimica Acta, 54, 2018–2023.

    Article  CAS  Google Scholar 

  • Martínez-Huitle, C. A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 87, 105–145.

    Article  Google Scholar 

  • Montanaro, D., & Petrucci, E. (2009). Electrochemical treatment of Remazol Brilliant Blue on a boron-doped diamond electrode. Chemical Engineering Journal, 153, 138–144.

    Article  CAS  Google Scholar 

  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology: process and product optimization using designed experiments (3rd ed.). New York: Wiley.

    Google Scholar 

  • Muthukumar, M., Sargunamani, D., & Selvakumar, N. (2005). Statistical analysis of the effect of aromatic, azo and sulphonic acid groups on decolouration of acid dye effluents using advanced oxidation processes. Dyes and Pigments, 65, 151–158.

    Article  CAS  Google Scholar 

  • Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59, 73–84.

    Article  CAS  Google Scholar 

  • Panizza, M., & Cerisola, G. (2005). Application of diamond electrodes to electrochemical processes. Electrochimica Acta, 51, 191–199.

    Article  CAS  Google Scholar 

  • Panizza, M., & Cerisola, G. (2008). Removal of colour and COD from wastewater containing Acid Blue 22 by electrochemical oxidation. Journal of Hazardous Materials, 153, 83–88.

    Article  CAS  Google Scholar 

  • Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 109, 6541–6569.

    Article  CAS  Google Scholar 

  • Panizza, M., Kapalka, A., & Comninellis, C. (2008). Oxidation of organic pollutants on BDD anodes using modulated current electrolysis. Electrochimica Acta, 53, 2289–2295.

    Article  CAS  Google Scholar 

  • Peralta-Hernández, J. M., Méndez-Tovar, M., Guerra-Sánchez, R., Martínez-Huitle, C. A., & Nava, J. L. (2012). A brief review on environmental application of boron doped diamond electrodes as a new way for electrochemical incineration of synthetic dyes. International Journal of Electrochemistry. doi:10.1155/2012/154316.

  • Pereira, G. F., Andrade, L. S., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2012). Electrochemical determination of bisphenol A using a boron-doped diamond electrode. Electrochimica Acta, 82, 3–8.

    Article  CAS  Google Scholar 

  • Pereira, G. F., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2012). Electrochemical degradation of bisphenol A using a flow reactor with a boron-doped diamond anode. Chemical Engineering Journal, 198–199, 282–288.

    Article  Google Scholar 

  • Polcaro, A. M., Vacca, A., Mascia, M., Palmas, S., & Ruiz, J. R. (2009). Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides. Journal of Applied Electrochemistry, 39, 2083–2092.

    Article  CAS  Google Scholar 

  • Prasad, R., Kumar, R., & Srivastava, S. (2008). Design of optimum response surface experiments for electro-coagulation of distillery spent wash. Water, Air, and Soil Pollution, 191, 5–13.

    Article  CAS  Google Scholar 

  • Rajkumar, D., & Kim, J. G. (2006). Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. Journal of Hazardous Materials, B136, 203–212.

    Article  Google Scholar 

  • Rodrigo, M. A., Cañizares, P., Sánchez-Carretero, A., & Sáez, C. (2010). Use of conductive-diamond electrochemical oxidation for wastewater treatment. Catalysis Today, 151, 173–177.

    Article  CAS  Google Scholar 

  • Rodriguez, J., Rodrigo, M. A., Panizza, M., & Cerisola, G. (2009). Electrochemical oxidation of Acid Yellow 1 using diamond anode. Journal of Applied Electrochemistry, 39, 2285–2289.

    Article  CAS  Google Scholar 

  • Sáez, C., Panizza, M., Rodrigo, M. A., & Cerisola, G. (2007). Electrochemical incineration of dyes using a boron-doped diamond anode. Journal of Chemical Technology and Biotechnology, 82, 575–581.

    Article  Google Scholar 

  • Sánchez-Carretero, A., Sáez, C., Cañizares, P., & Rodrigo, M. A. (2011). Electrochemical production of perchlorates using conductive diamond electrolyses. Chemical Engineering Journal, 166, 710–714.

    Article  Google Scholar 

  • Song, S., Fan, J., He, Z., Zhan, L., Liu, Z., Chen, J., et al. (2010). Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochimica Acta, 55, 3606–3613.

    Article  CAS  Google Scholar 

  • Urbansky, E. T. (2001). Total organic carbon analyzers as tools for measuring carbonaceous matter in natural waters. Journal of Environmental Monitoring, 3, 102–112.

    Article  CAS  Google Scholar 

  • Umbuzeiro, G. A., Freeman, H. S., Warren, S. H., Oliveira, D. P., Terao, Y., Watanabe, T., et al. (2005). The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere, 60, 55–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Junta de Comunidades de Castilla La Mancha, Spain (project PEII11-0097-2026). The Brazilian agencies CNPq and CAPES (scholarship for J. M. Aquino) are gratefully acknowledged. Dystar is also acknowledged for supplying the dye sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeu C. Rocha-Filho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2.10 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aquino, J.M., Rocha-Filho, R.C., Rodrigo, M.A. et al. Electrochemical Degradation of the Reactive Red 141 Dye Using a Boron-Doped Diamond Anode. Water Air Soil Pollut 224, 1397 (2013). https://doi.org/10.1007/s11270-012-1397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1397-9

Keywords

Navigation