Skip to main content
Log in

Acid Dye Biodegradation Using Saccharomyces cerevisiae Immobilized with Polyethyleneimine-Treated Sugarcane Bagasse

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV–vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amin, N. K. (2008). Removal of reactive dye form aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination, 223, 152–161.

    Article  CAS  Google Scholar 

  • Barreto, J. W., Bernardino, N. D., & Afonso, R. (2011). Biodegradação de uma mistura de corantes têxteis usando o fungo Ganoderma sp: um estudo cinético. Química Nova, 34(4), 568–572.

    CAS  Google Scholar 

  • Chacko, J. T., & Subramaniam, K. (2011). Enzymatic degradation of azo dyes—a review. International Journal of Environmental Sciences, 1(6), 1250–1260.

    Google Scholar 

  • Covizzi, L. G., Giese, E. C., & Dekker, R. F. H. (2007). Imobilização de células microbianas e suas aplicações biotecnológicas. Semina: Technology Experimental, 28(2), 143–160.

    CAS  Google Scholar 

  • Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27). Chemosphere, 56(10), 895–900.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Khataee, A. R., Rasoulifard, M. H., & Pourhassan, M. (2007). Biodegradation of dye solution containing Malachite Green: optimization of effective parameters using Taguchi method. Journal of Hazardous Materials, 143, 214–219.

    Article  CAS  Google Scholar 

  • Glenn, J. K., & Gold, M. H. (1983). Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied and Environmental Microbiology, 45(6), 1741–1747.

    CAS  Google Scholar 

  • Guaratini, C. C. I., & Zanoni, M. V. (2000). Corantes têxteis. Quim Nova, 23(1), 71–78.

    Article  CAS  Google Scholar 

  • Homagai, P. L., Ghimire, K. N., & Inoue, K. (2010). Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Desalination, 101, 2067–2069.

    CAS  Google Scholar 

  • Kunz, A., Peralta-Zamora, P., Moraes, S. G., & Durán, N. (2002). Novas Tendências no Tratamento de Eflfuentes Têxteis. Quimica Nova, 25(1), 78–82.

    Article  CAS  Google Scholar 

  • Leal, C. C. A., Rossiter Sa Da Rocha, O., Duarte, M. M. M. B., Dantas, R. F., Da Motta, M., Medeiros De Lima, N. M., & Da Silva, V. L. (2010). Evaluation of the adsorption process of remazol black B dye in liquid effluents by green coconut mesocarp. Afinidad, 66(546), 136–142.

    Google Scholar 

  • Lu, X., & Liu, R. (2010). Treatment of azo dye-containing wastewater using integrated processes. In H. A. Erkut (Ed.), Biodegradation of azo dyes (pp. 133–155). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Martin, M. (1998). Bioconversion of waste materials to industrial products (p. 556). London: Blackie Academic and Professional.

    Book  Google Scholar 

  • Martín-Lara, M. A., Rico, I. L. R., Vicente, I. C. A., García, G. B., & Hoces, M. C. (2006). Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination, 256, 58–63.

    Article  Google Scholar 

  • Mitter, E. K., Santos, G. C., Almeida, E. J. R., Morão, L. G., Rodrigues, H. D. P., & Corso, C. R. (2012). Analysis of Acid Alizarin Violet N dye removal using sugarcane bagasse as adsorbent. Water Air Soil Pollution, 223, 1–6.

    Article  Google Scholar 

  • Ogugbue, C. J., & Sawidis, T. (2011). Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluents. Biotechnology Research International, 2011, 1–11.

    Article  Google Scholar 

  • Rachakornkij, M., Ruangchuaya, S., & Teachakulwiroj, S. (2004). Removal of reactive dyes from aqueous solution using bagasse fly ash. Indian Journal of Science and Technology, 26(1), 13–24.

    Google Scholar 

  • Saad, S. A., Isa, K., & Bahari, R. (2010). Chemically modified sugarcane bagasse as a potentially low-cost biosorbent for dye removal. Desalination, 264, 123–128.

    Article  CAS  Google Scholar 

  • Solmaz, S. K. A., Birgül, A., Üstün, G. E., & Tasdemir, Y. (2006). Colour and COD removal from textile effluent by coagulation and advanced oxidation processes. Coloration Technology, 122, 102–109.

    Article  CAS  Google Scholar 

  • Suksombat, W. (2004). Comparison of different alkali treatment of bagasse and rice straw. Asian-Australian Journal of Animal Sciences, 17(10), 1430–1433.

    Google Scholar 

  • Sumbu, Z. L., Thonart, P., & Bechet, J. (1983). Action of patulin on a yeast. Applied Environment Microbiology, 45(1), 110–115.

    CAS  Google Scholar 

  • Tazhibaeva, S. M., Musabekov, K. B., Orazymbetova, A. B., & Zhubanova, A. A. (2003). Surface properties of yeast cells. Colloid Journal, 65(1), 122–124.

    Article  CAS  Google Scholar 

  • Teramoto, M., Nishibue, H., Ogawa, H., Kozono, H., Morita, K., & Matsuyama, H. (1996). Effect of addition of water-soluble cationic polymers on thermal stability and activity of glucose dehydrogenase. Colloid Surface B, 7, 165–171.

    Article  CAS  Google Scholar 

  • Vitor, V., & Corso, C. R. (2008). Decolorization of textile dye by Candida albicans isolated from industrial effluents. Journal of Industrial Microbiology and Biotechnology, 35(11), 1353–1357.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Mitter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitter, E.K., Corso, C.R. Acid Dye Biodegradation Using Saccharomyces cerevisiae Immobilized with Polyethyleneimine-Treated Sugarcane Bagasse. Water Air Soil Pollut 224, 1391 (2013). https://doi.org/10.1007/s11270-012-1391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1391-2

Keywords

Navigation