Skip to main content
Log in

The Impact of Process Sequences on Pollutant Removal Efficiencies in Tannery Wastewater Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A laboratory-scale study was conducted to determine the removal efficiencies of nine contaminants from a tannery wastewater using a number of physicochemical processes. Coagulation–flocculation using bittern as coagulant, oxidation-utilizing ozone, and adsorption using activated carbon were applied separately and in different sequences. Jar tests were utilized to conduct the experimental work. Except for arsenic, the highest removal efficiencies were recorded when coagulation/flocculation was conducted on the alkalized samples using a bittern dose of 5 mL/L. Activated carbon adsorption improved removal efficiencies of several contaminants. The coagulation/flocculation–adsorption sequence using the optimum dose of 5 mL/L of bittern resulted in high removal efficiencies for total suspended solids (TSS) (97 % ± 1), apparent color (100 % ± 0), turbidity (97 % ± 1), total nitrogen (86 % ± 1), and chromium (100 % ± 0). On the other hand, the same sequence resulted in moderate removal efficiencies for chemical oxygen demand (COD) (72 % ± 7) and total phosphorus (74 % ± 5) and relatively low removals for biochemical oxygen demand (BOD) (55 % ± 10) and arsenic (42 % ± 14). The removal efficiencies for the different tested sequences demonstrated that each sequence did improve the removal efficiencies for most of the parameters tested and consequently, the quality of tannery effluent. However, no single optimum sequence was capable of attaining high removal efficiencies for all nine parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber, S., Salari, D., & Parsa, M. R. (2010). Employing the Taguchi method to obtain the optimum conditions of coagulation–flocculation process in tannery wastewater treatment. Chemical Engineering Journal, 162(1), 127–134.

    Article  CAS  Google Scholar 

  • Ahn, D. H., Chang, W. S., & Yoon, T. I. (1999). Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process Biochemistry, 34(5), 429–439.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) (2005). Standard methods for the examination of water and wastewater. twenty-first ed., Washington, D.C.

  • Apaydin, O., Kurt, U., & Gönüllü, M. T. (2009). An investigation on the treatment of tannery wastewater by electrocoagulation. Global Nest Journal, 11(4), 546–555.

    Google Scholar 

  • Ates, E., Orhon, D., & Tünay, O. (1997). Characterization of tannery wastewaters for pretreatment—selected case studies. Water Science and Technology, 36(2–3), 217–223.

    Article  CAS  Google Scholar 

  • Ayoub, G. M., Merehbi, F., Abdallah, R., Acra, A., & El Fadel, M. E. (1999). Coagulation of alkalinized municipal wastewater using seawater bittern. Water Environment Research, 71(4), 443–453.

    Article  CAS  Google Scholar 

  • Ayoub, G. M., Merhebi, F., Acra, A., El, F. M., & Koopman, B. (2000). Seawater bittern for the treatment of alkalized industrial effluents. Water Research, 34(2), 640–656.

    Article  CAS  Google Scholar 

  • Ayoub, G. M., El-Fadel, M., Acra, A., & Abdallah, R. (2001a). Critical density index for the solar production of bittern from seawater. International Journal of Environmental Studies, 58(1), 85–97.

    Article  Google Scholar 

  • Ayoub, G. M., Semerjian, L., El-Fadel, M., & Koopman, B. (2001b). Heavy metal removal by coagulation with seawater liquid bittern. Journal of Environmental Engineering, Am Soc Civil Eng, 127(3), 196–207.

    CAS  Google Scholar 

  • Ayoub, G. M., Hamzeh, A., & Semerjian, L. (2011). Post treatment of tannery wastewater using lime/bittern coagulation and activated carbon adsorption. Desalination, 273(2–3), 359–365.

    Article  CAS  Google Scholar 

  • Bes-Piá, A., Cuartas-Uribe, B., Mendoza-Roca, J. A., Galiana-Aleixandre, M. V., Iborra-Clar, M. I., & Alcaina-Miranda, M. I. (2008). Pickling wastewater reclamation by means of nanofiltration. Desalination, 221(1–3), 225–233.

    Article  Google Scholar 

  • Blanco, J., Torrades, F., De la Varga, M., & García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286(1), 394–399.

    Article  CAS  Google Scholar 

  • Bódalo, A., Gómez, J. L., Gómez, E., Hidalgo, A. M., & Alemán, A. (2005). Viability study of different reverse osmosis membranes for application in the tertiary treatment of wastes from the tanning industry. Desalination, 180(1–3), 277–284.

    Article  Google Scholar 

  • Dantas, T. L. P., Jose, H. J., & Moreira, R. F. P. M. (2003). Fenton and photo-Fenton oxidation of tannery wastewater. Acta Scientiarum. Tech, 25(1), 91–95.

    CAS  Google Scholar 

  • De Gisi, S., Galasso, M., & De Feo, G. (2009). Treatment of tannery wastewater through the combination of a conventional activated sludge process and reverse osmosis with a plane membrane. Desalination, 249(1), 337–342.

    Article  Google Scholar 

  • Deepali, K. K., Gangwar, R., & Joshi, B. D. (2009). Comparative study of physico-chemical properties of effluent from tannery industries. Indian Journal of Environmental Sciences, 3, 49–52.

    Google Scholar 

  • Di Iaconi, C., Ramadori, R., & Lopez, A. (2009). The effect of ozone on tannery wastewater biological treatment at demonstrative scale. Bioresour Techno, 100(23), 6121–6124.

    Article  Google Scholar 

  • Dogruel, S., Genceli, E. A., Babuna, F. G., & Orhon, D. (2004). Ozonation of nonbiodegradable organics in tannery wastewater. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 39(7), 1705–1715.

    Article  Google Scholar 

  • Ellouze, E., Tahri, N., & Ben Amar, R. (2012). Enhancement of textile wastewater treatment process using Nanofiltration. Desalination, 286(1), 16–23.

    Article  CAS  Google Scholar 

  • Fababuj-Roger, M., Mendoza-Roca, J. A., Galiana-Aleixandre, M. V., Bes-Piá, A., Cuartas-Uribe, B., & Iborra-Clar, A. (2007). Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical–chemical treatment. Desalination, 204(1–3), 219–226.

    Article  CAS  Google Scholar 

  • Feng, J. W., Sun, Y. B., Zheng, Z., Zhang, J. B., Li, S., & Tian, Y. C. (2007). Treatment of tannery wastewater by electrocoagulation. Journal of Environmental Sciences, 19(12), 1409–1415.

    Article  CAS  Google Scholar 

  • Ganesh, R., Balaji, G., & Ramanujam, R. A. (2006). Biodegradation of tannery wastewater using sequencing batch reactor-respirometric assessment. Bioresource Technology, 97(15), 1815–1821.

    Article  CAS  Google Scholar 

  • Goltara, A., Martinez, J., & Mendez, R. (2003). Carbon and nitrogen removal from tannery wastewater with a membrane bioreactor. Water Science and Technology, 48(1), 207–214.

    CAS  Google Scholar 

  • Haydar, S., & Aziz, J. A. (2009a). Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)—a case study of Saddiq Leather Works. Journal of Hazardous Materials, 163(2–3), 1076–1083.

    Article  CAS  Google Scholar 

  • Haydar, S., & Aziz, J. A. (2009b). Coagulation-flocculation studies of tannery wastewater using combination of alum with cationic and anionic polymers. Journal of Hazardous Materials, 168(2–3), 1035–1040.

    Article  CAS  Google Scholar 

  • Jawahar, A. J., Chinnsdurai, M., Ponselvan, J. K. S., & Annadurai, G. (1998). Pollution from tanneries and options for treatment of effluent. Ind J Environ Protec, 18, 672–672.

    CAS  Google Scholar 

  • Kabdasli, I., Tünay, O., & Orhon, D. (1993). The treatability of chromium tannery wastes. Water Science and Technology, 28(2), 97–105.

    CAS  Google Scholar 

  • Kim, T. H., Park, C., Lee, J., Shin, E. B., & Kim, S. (2002). Pilot scale treatment of textile wastewater by combined process (fluidized biofilm process–chemical coagulation–electrochemical oxidation). Water Research, 36(16), 3979–3988.

    Article  CAS  Google Scholar 

  • Koteswari, Y. N., & Ramanibai, R. (2003). The effect of tannery effluent on the colonization rate of plankters: a microcosm study. Turk J Biol, 27, 163–170.

    Google Scholar 

  • Kurt, U., Apaydin, O., & Gonullu, M. T. (2007). Reduction of COD in wastewater from an organized tannery industrial region by electro-Fenton process. Journal of Hazardous Materials, 143(1–2), 33–40.

    Article  CAS  Google Scholar 

  • Leta, S., Assefa, F., Gumaelius, L., & Dalhammar, G. (2004). Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia. Applied Microbiol Biotechnol, 66(3), 333–339.

    Article  CAS  Google Scholar 

  • Lopez, A., Ricco, G., Ciannarella, R., Rozzi, A., Di Pinto, A. C., & Passino, R. (1999). Textile wastewater reuse: ozonation of membrane concentrated secondary effluent. Water Science and Technology, 40(4–5), 99–105.

    Article  CAS  Google Scholar 

  • Mandal, T., Dasgupta, D., Mandal, S., & Datta, S. (2010). Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process. Journal of Hazardous Materials, 180(1–3), 204–211.

    Article  CAS  Google Scholar 

  • Prabhavathy, C., & De, S. (2010). Treatment of fatliquoring effluent from a tannery using membrane separation process: experimental and modeling. Journal of Hazardous Materials, 176(1–3), 434–443.

    Article  CAS  Google Scholar 

  • Preethi, V., Parama Kalyani, K. S., Iyappan, K., Srinivasakannan, C., Balasubramaniam, N., & Vedaraman, N. (2009). Ozonation of tannery effluent for removal of cod and color. Journal of Hazardous Materials, 166(1), 150–154.

    Article  CAS  Google Scholar 

  • Rajalo, G., & Petrovskaya, T. (1996). Selective electrochemical oxidation of sulphides in tannery wastewater. Environmental Technology, 17(6), 605–612.

    Article  CAS  Google Scholar 

  • Rameshraja, D., & Suresh, S. (2011). Treatment of tannery wastewater by various oxidation and combined processes. Int J Environ Res, 5(2), 349–360.

    CAS  Google Scholar 

  • Ryu, H. D., Lee, S. I., & Chung, K. Y. (2007). Chemical oxygen demand removal efficiency of biological treatment process treating tannery wastewater following seawater flocculation. Environmental Engineering Science, 24(3), 394–399.

    Article  CAS  Google Scholar 

  • Scholz, W. G., Rougeä, P., Boädalo, A., & Leitz, U. (2005). Desalination of mixed tannery effluent with membrane bioreactor and reverse osmosis treatment. Environmental Science and Technology, 39(21), 8505–8511.

    Article  CAS  Google Scholar 

  • Song, Z., Williams, C. J., & Edyvean, R. G. J. (2001). Coagulation and anaerobic digestion of tannery wastewater. Process Safety and Environmental Protection, 79(1), 23–28.

    Article  CAS  Google Scholar 

  • Song, Z., Williams, C. J., & Edyvean, R. G. J. (2004). Treatment of tannery wastewater by chemical coagulation. Desalination, 164(3), 249–259.

    Article  CAS  Google Scholar 

  • Srinivasan, S. V., Mary, G. P. S., Kalyanaraman, C., Sureshkumar, P. S., Sri Balakameswari, K., Suthanthararajan, R., & Ravindranath, E. (2012). Combined advanced oxidation and biological treatment of tannery effluent. Clean Technologies and Environmental Policy, 14(2), 251–256.

    Article  CAS  Google Scholar 

  • Szpyrkowicz, L., Naumczyk, J., & Zilio-Grandi, F. (1995). Electrochemical treatment of tannery wastewater using TiPt and Ti/Pt/Ir electrodes. Water Research, 29(2), 517–524.

    Article  CAS  Google Scholar 

  • Szpyrkowicz, L., Kaul, S. N., Neti, R. N., & Satyanarayan, S. (2005). Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Research, 39(8), 1601–1613.

    Article  CAS  Google Scholar 

  • Sundarapandiyan, S., Chandrasekar, R., Ramanaiah, B., Krishnan, S., & Saravanan, P. (2010). Electrochemical oxidation and reuse of tannery saline wastewater. Journal of Hazardous Materials, 180(1–3), 197–203.

    Article  CAS  Google Scholar 

  • Suresh, V., Kanthimathi, M., Thanikaivelan, P., Raghava Rao, J., & Unni Nair, B. (2001). An improved product-process for cleaner chrome tanning in leather processing. Journal of Cleaner Production, 9(6), 483–491.

    Article  Google Scholar 

  • Tahir, S. S., & Naseem, R. (2007). Removal of Cr(III) from tannery wastewater by adsorption onto Bentonite clay. Separation and Purification Technology, 53(3), 312–321.

    Article  CAS  Google Scholar 

  • Tiravanti, G., Petruzzelli, D., & Passino, R. (1997). Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Science and Technology, 36(2–3), 197–207.

    Article  CAS  Google Scholar 

  • Tare, V., Gupta, S., & Bose, P. (2003). Case studies on biological treatment of tannery effluents in India. Journal of the Air & Waste Management Association, 53, 976–982.

    Article  CAS  Google Scholar 

  • Tunay, O., Orhon, D., & Kabdasli, I. (1994). Pretreatment requirements for leather tanning industry wastewaters. Water Science and Technology, 29(9), 121–128.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1997). Federal guidelines on state and local pretreatment programs, Vol. 2. Washington, D.C.

  • Vidal, G., Nieto, J., Mansilla, H. D., & Bornhardt, C. (2004). Combined oxidative and biological treatment of separated streams of tannery wastewater. Water Science and Technology, 49(4), 287–292.

    CAS  Google Scholar 

  • Vlyssides, A. G., & Israilides, C. J. (1997). Detoxification of tannery waste liquors with an electrolysis system. Environmental Pollution, 97(1–2), 147–152.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Environmental and Water Resources Research Center at the American University of Beirut for providing their facilities to conduct the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Ayoub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayoub, G.M., Hamzeh, A. & Al-Hindi, M. The Impact of Process Sequences on Pollutant Removal Efficiencies in Tannery Wastewater Treatment. Water Air Soil Pollut 224, 1379 (2013). https://doi.org/10.1007/s11270-012-1379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1379-y

Keywords

Navigation