Skip to main content
Log in

Phosphate Adsorption from Aqueous Solutions onto Goethite, Bentonite, and Bentonite–Goethite System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present paper examines the phosphate adsorption from aqueous solutions onto goethite, bentonite, and bentonite–goethite system. The properties of the materials were studied by X-ray diffraction (XRD), attenuated total reflectance (ATR), and NMR spectra and by the measurement of the specific surface area, the point of zero charge (p.z.c.) and the pore-specific volume. ATR and NMR spectra of bentonite and bentonite–goethite system show peaks which correspond to tetrahedrally and octahedrally coordinated Al. The specific surface area of the system differs according to the appropriate method used, while system’s p.z.c. is higher than bentonite and lower than goethite. The pore-specific volume of bentonite–goethite system is higher than that of bentonite or goethite. According to XRD spectrum of bentonite–goethite system, goethite coats the (001) spacing of bentonite while the coating of (010) plane of bentonite is limited. The crystallinity of the system decreases and the negative permanent charge increases. Phosphate adsorption experiments took place at different pH (3.8–9.0) and concentrations (40.3–443.5 μmol L−1) and constant capacitance model was applied to describe adsorption. A ligand exchange mechanism characterizes the model because the charge is divided among adsorbate and adsorbent. The constant capacitance model describes the adsorption mechanism in all examined pH. This model can be utilized in such systems using the surface protonation-dissociation constant of goethite and showing the exact shape of the adsorption isotherms for different pH values. Τhe produced low-cost bentonite–goethite system presents the highest adsorption of P per kilogram of goethite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antelo, J., Avena, M., Fiol, S., López, R., & Arce, F. (2005). Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface. Journal of Colloid and Interface Science, 285, 476–486.

    Article  CAS  Google Scholar 

  • Arnepalli, D. N., Shanthakumar, S., Hanumantha Rao, B., & Singh, D. N. (2008). Comparison of methods for determining specific-surface area of fine-grained soils. Geotechnical and Geological Engineering, 26, 121–132.

    Article  Google Scholar 

  • Bondietti, G., Sinniger, J., & Stumm, W. (1993). The reactivity of Fe(III) (hydr)oxides: effects of ligands in inhibiting the dissolution. Colloids Surface A: Physicochemicals Engineering Aspects, 79, 157–167.

    Article  Google Scholar 

  • Boujelben, N., Bouzid, J., Elouear, Z., Feki, M., Jamoussi, F., & Montiel, A. (2008). Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. Journal of Hazardous Materials, 151, 103–110.

    Article  CAS  Google Scholar 

  • Calabi, L., Paleari, L., Biondi, L., Linati, L., De Miranda, M., & Ghelli, S. (2003). Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents. Journal of Magnetic Resonance, 164(1), 28–34.

    Article  CAS  Google Scholar 

  • Cerato, A. B., & Lutenegger, A. J. (2002). Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotechnical Testing Journal, 25(3), 1–7.

    Google Scholar 

  • Colombo, C., Barrón, V., & Torrent, J. (1994). Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochimica et Cosmochimica Acta, 58(4), 1261–1269.

    Article  CAS  Google Scholar 

  • Cornell, R.M., Schwertmann, U. (1996). The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses. (pp.14, 38, 59, 95, 118, 129, 148, 291, 352, 401, 434, 489). Weinheim, New York.

  • Davis, J. A., James, R. O., & Leckie, J. O. (1978). Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes. Journal of Colloid and Interface Science, 63, 480–499.

    Article  CAS  Google Scholar 

  • Dimirkou, A., Ioannou, A., & Doula, M. (2002). Preparation, characterization and sorption properties for phosphates of hematite, bentonite and bentonite–hematite systems. Advances in Colloid and Interface Science, 97, 37–61.

    Google Scholar 

  • Gao, Y., & Mucci, A. (2003). Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chemical Geology, 199, 91–109.

    Article  CAS  Google Scholar 

  • Gates, W. P. (2005). Infrared Spectroscopy and the Chemistry of Dioctahedral Smectites: Vibrational Spectroscopy of Layer Silicates and Hydroxides. In T. Kloprogge (Eds.), CMS Workshop Lectures, The Clay Minerals Society. Aurora, Co, 13 (125–168).

  • Goldberg, S. (1992). Use of surface complexation models in soil chemical systems. Advances in Agronomy, 47, 233–239.

    Article  CAS  Google Scholar 

  • Goldberg, S. (1995). Chemical equilibrium and reaction models. In R. H. Loeppert et al. (Eds.), Soil Science Society of America (Spec. Publ. 42, pp. 75.) Soil Science Society of America, Madison, WI.

  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity (2nd ed.). London: Academic.

    Google Scholar 

  • Heal, K., Younger, P., Smith, K., Glendinning, S., Quinn, P., & Dobbie, K. (2003). Novel use of ochre from mine water treatment plants to reduce point and diffuse phosphorus pollution. Land Contaminant Reclamation, 11(2), 145–152.

    Article  Google Scholar 

  • Hohl, H., & Stumm, W. J. (1976). Interaction of Pb2+ with hydrous Al2O3. Journal of Colloid and Interface Science, 55, 281–288.

    Article  CAS  Google Scholar 

  • Huang, C. P., & Stumm, W. J. (1973). Adsorption of cations on hydrous Al2O3. Journal of Colloid and Interface Science, 43, 409–414.

    Article  CAS  Google Scholar 

  • James, R. O., & Parks, G. A. (1982). Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties. Surface Colloidal Science, 12, 119–216.

    Article  CAS  Google Scholar 

  • James, R. O., Davis, J. A., & Leckie, J. O. (1978). Computer simulation of the conductometric and potentiometric titrations of the surface groups on ionizable latexes. Journal of Colloid and Interface Science, 65, 331–343.

    Article  CAS  Google Scholar 

  • Jiménez-Cedillo, M. J., Olguín, M. T., Fall, C., & Colín, A. (2011). Adsorption capacity of iron- or iron–manganese-modified zeolite-rich tuffs for As(III) and As(V) water pollutants. Applied Clay Science, 54, 206–216.

    Article  Google Scholar 

  • Krehula, S., Popović, S., & Musić, S. (2002). Synthesis of acicular α-FeOOH particles at a very high pH. Materials Letters, 54, 108–113.

    Article  CAS  Google Scholar 

  • Ler, A., & Stanforth, R. (2003). Evidence for surface precipitation of phosphate on goethite. Environmental Science and Technology, 37, 2694–2700.

    Article  CAS  Google Scholar 

  • Luengo, C., Brigante, M., & Avena, M. (2007). Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. Journal of Colloid and Interface Science, 311, 354–360.

    Google Scholar 

  • Madejová, J., Komadel, P (2005). Infrared spectra of the fine fractions of bentonites. The application of vibrational spectroscopy to clay minerals and layered double hydroxides. In T. Kloprogge (Eds.), CMC Workshop Lectures, The Clay Minerals Society, Aurora, Co, 13, 66–98.

  • Mikutta, C., Lang, F., & Kaupenjohann, M. (2006). Kinetics of phosphate sorption to polygalacturonate-coated goethite. Soil Science Society of America Journal, 70, 541–549.

    Article  CAS  Google Scholar 

  • Miranda-Trevino, J. C., & Coles, C. A. (2003). Kaolinite properties, structure and influence of metal retention on pH. Applied Clay Science, 23, 133–139.

    Article  CAS  Google Scholar 

  • Morel, F. M. M., Westall, J. C., & Yeasted, J. G. (1981). A mathematical analysis in the framework of general equilibrium calculations. In M. A. Anderson & A. J. Rubin (Eds.), Adsorption of inorganics at solid–liquid interfaces. Ann Arbor: Ann Arbor Science Publications.

    Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nowack, B., & Stone, A. T. (2006). Competitive adsorption of phosphate and phosphonates onto goethite. Water Research, 40, 2201–2209.

    Article  CAS  Google Scholar 

  • Parfitt, R. L., & Atkinson, R. J. (1976). Phosphate adsorption on goethite (α-FeOOH). Nature, 264, 740–742.

    Article  CAS  Google Scholar 

  • Russell, J. D., Fraser, A. R. (1994). Infrared methods, clay mineralogy: spectroscopic and chemical determinative methods, Ιn M. J. Wilson (Eds.), pp. 11–67. Chapman & Hall.

  • Schwertmann, U., & Cornell, R. M. (1991). Iron oxides in the laboratory. VCH: Weinheim.

    Google Scholar 

  • Song, X., Pan, Y., Wu, Q., Cheng, Z., & Ma, W. (2011). Phosphate removal from aqueous solutions by adsorption using ferric sludge. Desalination, 280, 384–390.

    Article  CAS  Google Scholar 

  • Stumm, W. (1992). Chemistry of the solid–water interface: processes at the mineral–water and particle–water interface in natural systems. New York: Wiley.

    Google Scholar 

  • Tabaka, A., Yilmaza, N., Erenb, E., Caglarc, B., Afsind, B., & Sarihanb, A. (2011). Structural analysis of naproxen-intercalated bentonite (Unye). Chemical Engineering Journal, 174, 281–288.

    Article  Google Scholar 

  • Tan, H. K. (1993). Principles of soil chemistry (pp. 131–143). New York: Marcel Dekker.

    Google Scholar 

  • Tejedor-Tejedor, M. I., & Anderson, M. A. (1990). The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir, 6, 602–611.

    Article  CAS  Google Scholar 

  • Tshapek, M., Tcheichvili, L., & Wasowski, C. (1974). The point of zero charge (pzc) of kaolinite and SiO2 + Al2O3 mixtures. Clay Minerals, 10, 219–229.

    Article  Google Scholar 

  • Verdonk, L., Hoste, S., Roelandt, F. F., & Van der Kelen, G. P. (1982). Normal coordinate analysis of α-FeOOH—a molecular approach. Journal of Molecular Structure, 79, 273–279.

    Article  Google Scholar 

  • Westall, J., & Hohl, H. (1980). A comparison of electrostatic models for the oxide/solution interface. Advances in Colloid and Interface Science, 12, 265–294.

    Google Scholar 

Download references

Acknowledgments

Authors express their gratitude to Dr G. Chryssikos and Dr V. Gionis from National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute for the ATR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ioannou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioannou, Z., Dimirkou, A. & Ioannou, A. Phosphate Adsorption from Aqueous Solutions onto Goethite, Bentonite, and Bentonite–Goethite System. Water Air Soil Pollut 224, 1374 (2013). https://doi.org/10.1007/s11270-012-1374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1374-3

Keywords

Navigation