Skip to main content
Log in

Estimating In Situ Biodegradation Rates of Petroleum Hydrocarbons and Microbial Population Dynamics by Performing Single-Well Push–Pull Tests in a Fractured Bedrock Aquifer

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The single-well push–pull test (SWPPT) was adapted to quantify in situ aerobic respiration and denitrification rates and to assess microbial population dynamics in a petroleum-contaminated fractured bedrock aquifer. Among three test wells, significant dissolved oxygen (DO) consumption was observed only in one well, with average zero- and first-order rate coefficients of 0.32 ± 0.63 and 7.07 ± 13.85 mmol L−1 day−1, respectively. Of the four test wells, significant NO3 consumption was noted in three wells. The average zero- and first-order rate coefficients were 2.87 ± 2.21 and 11.83 ± 7.99 mmol L−1 day−1, respectively. These results indicate that NO3 was more effectively consumed within this fractured bedrock aquifer. Significant DO or NO3 (electron acceptors (EAs)) consumption, the limited contribution of Fe(II) to overall EAs consumption, the production of dissolved CO2 during aerobic respiration and denitrification tests, and N2O production strongly suggest that the EAs consumption was largely due to microbial activity. Detection of Variovorax paradox, benzene-degrading culture, and 28 novel microbial species after the addition of O2 or NO3 suggests that EA injection into a fractured rock aquifer may stimulate aerobic or denitrifying petroleum-degrading microbes. Therefore, SWPPT may be useful for quantifying in situ aerobic respiration and denitrification rates and for assessing microbial population dynamics in petroleum-contaminated fractured bedrock aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SWPPT:

Single-well push–pull test

BTEX:

Benzene, toluene, ethylbenzene, and xylene

ED:

Electron donor

EA:

Electron acceptor

CS:

Carbon source

References

  • Addy, K., Kellogg, D. Q., Gold, A. J., Groffman, P. M., Ferendo, G., & Sawyer, C. (2002). In situ push–pull method to determine ground water denitrification in riparian zones. Journal of Environmental Quality, 31, 1017–1024.

    Article  CAS  Google Scholar 

  • Arnon, S., Adar, E., Ronen, Z., Yakirevich, A., & Nativ, R. (2005). Impact of microbial activity on the hydraulic properties of fractured chalk. Journal of Contaminant Hydrology, 76(3–4), 315–336.

    Article  CAS  Google Scholar 

  • Berlendis, S., Lascourreges, J.-F., Schraauwers, B., Sivadon, P., & Magot, M. (2010). Anaerobic biodegradation of BTEX by original bacterial communities from an underground gas storage aquifer. Environmental Science and Technology, 44, 3621–3628.

    Article  CAS  Google Scholar 

  • Braeckevelt, M., Rokadia, H., Imfeld, G., Stelzer, N., Paschke, H., Kuschk, P., Kastner, M., Richnow, H.-H., & Weber, S. (2007). Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland. Environmental Pollution, 148, 428–437.

    Article  CAS  Google Scholar 

  • Burbery, L., Cassiani, G., Andreotti, G., Ricchiuto, T., & Semple, K. T. (2004). Single-well reactive tracer test and stable isotope analysis for determination of microbial activity in a fast hydrocarbon-contaminated aquifer. Environmental Pollution, 129, 321–330.

    Article  CAS  Google Scholar 

  • Chappelle, F. H., & McMahon, P. B. (1991). Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production. Journal of Hydrology, 127, 85–108.

    Article  Google Scholar 

  • Chappelle, F. H., Bradley, P. M., Lovley, D. R., & Vroblesky, D. A. (1996). Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Ground Water, 34, 691–698.

    Article  Google Scholar 

  • Cunningham, J. A., Rahme, H., Hopkins, G. D., Lebron, C., & Reinhard, M. (2001). Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environmental Science and Technology, 35, 1663–1670.

    Article  CAS  Google Scholar 

  • Devlin, J. F., Katic, D., & Barker, J. F. (2004). In situ sequenced bioremediation of mixed contaminants in groundwater. Journal of Contaminant Hydrology, 69, 233–261.

    Article  CAS  Google Scholar 

  • Fagerlund, F., & Niemi, A. (2007). A partially coupled, fraction-by-fraction modelling approach to the subsurface migration of gasoline spills. Journal of Contaminant Hydrology, 89, 174–198.

    Article  CAS  Google Scholar 

  • Gierczak, R., Devlin, J. F., & Rudolph, D. L. (2007). Field test of a cross-injection scheme for stimulating in situ denitrification near a municipal water supply well. Journal of Contaminant Hydrology, 89, 48–70.

    Article  CAS  Google Scholar 

  • Greer, K. D., Molson, J. W., Barker, J. F., Thomson, N. R., & Donaldson, C. R. (2010). High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer. Journal of Contaminant Hydrology, 118, 13–26.

    Article  CAS  Google Scholar 

  • Haggerty, R., Schroth, M. H., & Istok, J. D. (1998). Simplified method of “push–pull” test data analysis for determining in situ reaction rate coefficients. Ground Water, 36, 314–324.

    Article  CAS  Google Scholar 

  • Heider, J., & Fuchs, G. (1997). Anaerobic metabolism of aromatic compounds. European Journal of Biochemistry, 243, 577–596.

    Article  CAS  Google Scholar 

  • Heider, J., Spormann, A. M., Beller, H. R., & Widdel, F. (1999). Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiology Reviews, 22, 459–473.

    Article  Google Scholar 

  • Istok, J. D., Humphrey, M. D., Schroth, M. H., Hyman, M. R., & O’Reilly, K. T. (1997). Single-well push–pull test method for in situ determination of microbial metabolic activities. Ground Water, 35, 619–631.

    Article  CAS  Google Scholar 

  • Istok, J. D., Field, J. A., Schroth, M. H., Davis, B. M., & Dwarakanath, V. (2002). Single-well “push–pull” partitioning tracer test for NAPL detection in the subsurface. Environmental Science and Technology, 36, 2708–2716.

    Article  CAS  Google Scholar 

  • Jacques, D., Simunek, J., Mallants, D., & van Genuchten, M. T. (2008). Modeling coupled hydrologic and chemical processes: long-term uranium transport following phosphorus fertilization. Vadose Zone Journal, 7, 698–711.

    Article  Google Scholar 

  • Jorgensen, B. B. (1989). Biogeochemistry of chemoautotrophic bacteria. In H. G. Schlegel & B. Bowien (Eds.), In autrotrophic bacteria (pp. 117–146). Madison: Science Technology.

    Google Scholar 

  • Kao, C. M., & Wang, C. C. (2000). Control of BTEX migration by intrinsic bioremediation at a gasoline spill site. Water Research, 34, 3413–3423.

    Article  CAS  Google Scholar 

  • Kim, Y., Istok, J. D., & Semprini, L. (2004). Push–pull tests for assessing in-situ aerobic cometabolism. Ground Water, 42, 329–337.

    Article  CAS  Google Scholar 

  • Kim, Y., Istok, J. D., & Semprini, L. (2006). Push–pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene. Journal of Contaminant Hydrology, 82, 165–181.

    Article  CAS  Google Scholar 

  • Kleikemper, J., Schroth, M. H., Sigler, W. V., Schmucki, M., Stefano, M. B., & Zeyer, J. (2002). Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Applied and Environmental Microbiology, 64, 1516–1523.

    Article  Google Scholar 

  • Lovley, D. R., & Lonergan, D. J. (1990). Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimllatory iron-reducing organism, GS-15. Applied and Environmental Microbiology, 56, 1858–1864.

    CAS  Google Scholar 

  • Maliyekkal, S. M., Rene, E. R., Philip, L., & Swaminathan, T. (2004). Performance of BTX degraders under substrate versatility conditions. Journal of Hazardous Materials, 109, 201–211.

    Article  CAS  Google Scholar 

  • McGuire, J. T., Long, D. T., Klug, M. J., Haack, S. K., & Hyndman, D. W. (2002). Evaluating behavior of oxygen, nitrate, and sulfate during recharge and quantifying reduction rates in a contaminated aquifer. Environmental Science and Technology, 36, 2693–2700.

    Article  CAS  Google Scholar 

  • Menendez-Vega, D., Gallego, J., Pelaez, A., Fernandez de Cordoba, G., Moreno, J., Munoz, D., & Sanchez, J. (2007). Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. European Journal of Soil Biology, 43, 310–321.

    Article  CAS  Google Scholar 

  • Pitterle, M. T., Andersen, R. G., Novak, J. T., & Widdowson, M. A. (2005). Push–pull tests to quantify in situ degradation rates at a phytoremediation site. Environmental Science and Technology, 39, 9317–9323.

    Article  CAS  Google Scholar 

  • Rabus, R., Nordhaus, R., Ludwig, W., & Widdel, F. (1993). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Applied and Environmental Microbiology, 59, 1444–1451.

    CAS  Google Scholar 

  • Rittman, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principle and applications (pp. 127–154). New York: McGraw-Hill.

    Google Scholar 

  • Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D., & Lovley, D. R. (1999). Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Applied and Environmental Microbiology, 65, 3056–3063.

    CAS  Google Scholar 

  • Schreiber, M. E., & Bahr, J. M. (2002). Nitrate-enhanced bioremediation of BTEX contaminated groundwater: parameter estimation from natural-gradient tracer experiments. Journal of Contaminant Hydrology, 55, 29–56.

    Article  CAS  Google Scholar 

  • Schroth, M. H., Istok, J. D., Conner, G. T., Hyman, M. R., Haggerty, R., & O’Reilly, K. T. (1998). Spatial variability in in situ aerobic respiration and denitrification rates in a petroleum-contaminated aquifer. Ground Water, 36, 924–937.

    Article  CAS  Google Scholar 

  • Schroth, M. H., Kleikemper, J., Bolliger, C., Bernasconi, S. M., & Zeyer, J. (2001). In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push–pull tests and stable sulfur isotope analyses. Journal of Contaminant Hydrology, 51, 179–195.

    Article  CAS  Google Scholar 

  • Smith, R. L., Garabedian, S. P., & Brooks, M. H. (1996). Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests. Environmental Science and Technology, 30, 3448–3456.

    Article  CAS  Google Scholar 

  • Snodgrass, M. F., & Kitanidis, P. K. (1998). A method to infer in situ reaction rates from push–pull experiments. Ground Water, 36, 645–650.

    Article  CAS  Google Scholar 

  • Vieira, P. A., Vieira, R. B., de França, F. P., & Cardoso, V. L. (2007). Biodegradation of effluent contaminated with diesel fuel and gasoline. Journal of Hazardous Materials, 140, 52–59.

    Article  CAS  Google Scholar 

  • Witzig, R., Junca, H., Hecht, H.-J., & Pieper, D. H. (2006). Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Applied and Environmental Microbiology, 72, 3504–3514.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea Ministry of Environment as “The GAIA project (No. G111-17003-0011-1)” and a Korea University Grant. This article has not been reviewed by these agencies, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Y., Han, K., Kim, N. et al. Estimating In Situ Biodegradation Rates of Petroleum Hydrocarbons and Microbial Population Dynamics by Performing Single-Well Push–Pull Tests in a Fractured Bedrock Aquifer. Water Air Soil Pollut 224, 1364 (2013). https://doi.org/10.1007/s11270-012-1364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1364-5

Keywords

Navigation