Skip to main content
Log in

Complexation Study of Humic Acids Extracted from Forest and Sahara Soils with Zinc (II) and Cadmium (II) by Differential Pulse Anodic Stripping Voltammetry (DPASV) and Conductimetric Methods

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The complexation of heavy metals, present in their dissolved state at relevant trace levels, with new humic acids (HAs) isolated from Yakouren forest (YHA) and Sahara (Tamenrasset: THA) soils has been studied by differential pulse anodic stripping voltammetry (DPASV) at a hanging mercury drop electrode and conductimetry methods. After extraction and purification, humic acids were characterized by elemental analyses, atomic absorption spectroscopy, FT-IR, and solution state 13C-NMR. Taking Zn(II) and Cd(II) as examples, the aim of this study was to gain direct information on the general level of importance of humic acids for the speciation of certain heavy metals in soil to determine the complexing capacities of AHs and stability constant of the complexes formed with these metal ions and to compare the complexation capacity of forest and Sahara soils with the commercial humic acid and other published AHs. The results determined by conductimetry method are interpreted using an excess function (∆k) which related the conductivity of the mixture and of the separated components. A positive value of this function is obtained. It indicates the complexation of humic acids with metallic ions. The DPASV method was used for determining metal ion complexing capacities and stability constants of metal ion complexes of HAs in solution at pH 7. In both types of soils, the commercial humic acid (CHA) is less efficient in complexing Zn(II) and Cd(II) than THA and YHA and the complexing capacity (CCM) decreases in the order: THA > YHA > CHA. In general, the results of complexing capacity for all humic acids and stability constants of Zn(II) and Cd(II) complexes found by DPASV method showed good correlation with those of conductimetry method. CCM of THA and YHA calculated by DPASV were higher than those of CHA and the other natural HAs published in the literature at pH 7 basing on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abate, G., & Masini, J. C. (2002). Complexation of Cd(II) and Pb(II) with humic acids studied by anodic stripping voltammetry using differential equilibrium functions and discrete site models. Organic Geochemistry, 33(10), 1171–1182. doi:10.1016/S0146-6380(02)00087-6.

    Article  CAS  Google Scholar 

  • Arai, S., & Kumada, K. (1977). An interpretation of the conductometric titration curve of humic acid. Geoderma, 19(1), 21–35. doi:10.1016/0016-7061(77)90011-8.

    Article  CAS  Google Scholar 

  • Artinger, R., Rabung, T., Kim, J. I., Sachs, S., Schmeide, K., Heise, K. H., et al. (2002). Humic colloid-borne migration of uranium in sand columns. Journal of Contaminant Hydrology, 58(1), 1–12. doi:10.1016/S0169-7722(02)00032-3.

    Article  CAS  Google Scholar 

  • Benato, V. S., & Sc, M. (1999). Dissertation. Brazil: Universidade Federal de Santa Catarina.

    Google Scholar 

  • Buffle, J. (1988). Complexation reactions in aquatic systems: An Analytical Approach. Chichester: Wiley.

    Google Scholar 

  • Ceriotti, G., & Amarasiriwardena, D. (2009). A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway. Journal of Microchemical, 91(1), 85–93. doi:10.1016/j.microc.2008.08.010.

    Article  CAS  Google Scholar 

  • Claret, F., Schafer, T., Rabung, T., Wolf, M., Bauer, A., & Buckau, G. (2005). Differences in properties and Cm(III) complexation behavior of isolated humic and fulvic acid derived from Opalinus clay and Callovo-Oxfordian argillite. Applied Geochemistry, 20(6), 1158–1168. doi:10.1016/j.apgeochem.2005.01.008.

    Article  CAS  Google Scholar 

  • Cleven, R.M.F.J. (1984), Ph. D Thesis, Agricultural University of Wageningen, the Netherlands.

  • Coles, C. A., & Yong, R. N. (2006). Humic acid preparation, properties and interactions with metals lead and cadmium. Engineering Geology, 85(1), 26–32. doi:10.1016/j.enggeo.2005.09.024.

    Article  Google Scholar 

  • Corrado, G., Sanchez-Cortes, S., Francioso, O., & Garcia-Ramos, J. V. (2008). Surface-enhanced Raman and fluorescence joint analysis of soil humic acids. Analytica Chimica Acta, 616(1), 69–77. doi:10.1016/j.aca.2008.04.019.

    Article  CAS  Google Scholar 

  • Elkins, K. M., & Nelson, D. J. (2001). Fluorescence and FT-IR spectroscopic studies of Suwannee river fulvic acid complexation with aluminum, terbium and calcium. Journal of Inorganic Biochemistry, 87(2), 81–96. doi:10.1016/S0162-0134(01)00318-X.

    Article  CAS  Google Scholar 

  • Elkins, K. M., & Nelson, D. J. (2002). Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordination Chemistry Reviews, 228(2), 205–225. doi:10.1016/S0010-8545(02)00040-1.

    Article  CAS  Google Scholar 

  • Evangelou, V. P., & Marsi, M. (2001). Composition and metal ion complexation behaviour of humic fractions derived from corn tissue. Plant and Soil, 229(1), 13–24.

    Article  CAS  Google Scholar 

  • Florence, T. M. (1982). Development of physico-chemical speciation procedures to investigate the toxicity of copper, lead, cadmium and zinc towards aquatic biota. Analytica Chimica Acta, 141, 73–94.

    Article  CAS  Google Scholar 

  • Gao, K., Pearce, J., Jones, J., & Taylor, C. (1999). Interaction between peat, humic acid and aqueous metal ions. Environmental Geochemistry and Health, 21(1), 13–26.

    Article  CAS  Google Scholar 

  • Garcia-Mina, J. M. (2006). Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry, 37(12), 1960–1972. doi:10.1016/j.orggeochem.2006.07.027.

    Article  CAS  Google Scholar 

  • Garnier, C., Pižeta, I., Mounier, S., Benaim, J. Y., & Branica, M. (2004). Influence of the type of titration and of data treatment methods on metal complexing parameters determination of single and multi-ligand systems measured by stripping voltammetry. Analytica Chimica Acta, 505(2), 263–275. doi:10.1016/j.aca.2003.10.066.

    Article  CAS  Google Scholar 

  • Ghatak, H., Mukhopadhyay, S. K., Jana, T. K., Sen, B. K., & Sen, S. (2004). Interactions of Cu (II) and Fe (III) with mangal humic substances studied by synchronous fluorescence spectroscopy and potentiometric titration. Wetlands Ecology and Management, 12(3), 145–155. doi:10.1023/B:WETL.0000034068.68049.a3.

    Article  CAS  Google Scholar 

  • Gossart, P., Semmoud, A., Ruckebusch, C., & Huvenne, J. P. (2003). Multivariate curve resolution applied to Fourier transforms infrared spectra of macromolecules: structural characterisation of the acid form and the salt form of humic acids in interaction with lead. Analytica Chimica Acta, 477(2), 201–209. doi:10.1016/S0003-2670(02)01415-0.

    Article  CAS  Google Scholar 

  • Grzybowski, W. (2000). Comparison between stability constants of cadmium and lead complexes with humic substances of different molecular weight isolated from Baltic Sea water. Oceanologia, 42(4), 473–482.

    Google Scholar 

  • Hayes, M. H. B. (1985). Humic substances in soil, sediment and water (pp. 329–362). New York: Wiley.

    Google Scholar 

  • Jansen, S. A., Varnum, J. M., Kolla, S., Paciolla, M. D., Sein, L. T., Nwabara, S., et al. (1997). In J. Drozd, S. S. Gonet, N. Sensesi, & J. Weber (Eds.), Metal uptake by metal free humic acid in the Role of Humic Substances in Ecosystems and in Environmental Protection. Wroclaw: Polish Society of Humic Substances.

    Google Scholar 

  • Kaemmerer, M., Guiresse, M., Revel, J. C., Koetz, P., Facal, P., & Rey, P. (1999). Conductimetric behaviour of humic acids with Cu(II) ions. Analusis, 27(5), 421–423. doi:10.1051/analusis:1999270421.

    Article  CAS  Google Scholar 

  • Kaschl, A., Römheld, R., & Chen, Y. (2002a). Binding of cadmium, copper, and zinc to humic substances originating from municipal solid waste compost. Israel Journal of Chemistry, 42(1), 89–98.

    Article  CAS  Google Scholar 

  • Kaschl, A., Römheld, R., & Chen, Y. (2002b). Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost. Journal of Environmental Quality, 31, 1885–1892.

    Article  CAS  Google Scholar 

  • Kerndorff, H., & Schnitzer, M. (1980). Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44, 1701–1708.

    Article  CAS  Google Scholar 

  • Kolawole, E. G., & Olayemi, J. Y. (1981). Binding of zinc ions to polymethacrylate anions at varying charge densities. Macromolecules, 14(4), 1050–1054. doi:10.1021/ma50005a030.

    Article  CAS  Google Scholar 

  • Lamelas, C., Avaltroni, F., Benedetti, M., Wilkinson, K. J., & Slaveykova, V. I. (2005). Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation. Biomacromolecules, 6(5), 2756–2764. doi:10.1021/bm050252y.

    Article  CAS  Google Scholar 

  • Livens, F. R. (1991). Chemical reactions of metals with humic material. Environmental Pollution, 70(3), 183–208.

    Article  CAS  Google Scholar 

  • Lu, X. Q., Hanna, J. V., & Johnson, W. D. (2000). Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Applied Geochemistry, 15, 1019–1033.

    Article  CAS  Google Scholar 

  • MacCarthy, P. (1989). In I. H. Suffet & P. MacCarthy (Eds.), Aquatic humic substances and their influence fate and treatment of pollutants (pp. 17–30). Washington: American Chemical Society.

    Google Scholar 

  • MacCarthy, P., & Rice, J. A. (1985). Spectroscopic methods (other than RMN) for determining functionality in humic substances. In G. R. Aiken, D. M. McKnight, R. L. Wershaw, & J. McCarthy (Eds.), Humic Substances in Soils, Sediments and Water (pp. 527–559). New York: Wiley.

    Google Scholar 

  • Malcolm, R. L. (1989). Applications of solid-state 13C-NMR spectroscopy to geochemical studies of humic substances. In M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, & R. S. Swift (Eds.), Humic Substances: II (pp. 339–372). New York: Wiley.

    Google Scholar 

  • Nakashima, K., Xing, S., Gong, Y., & Miyajima, T. (2008). Characterization of humic acids by two-dimensional correlation fluorescence spectroscopy. Journal of Molecular Structure, 883–884, 155–159. doi:10.1016/j.molstruc.2007.11.027.

    Article  Google Scholar 

  • Pardo, R., Barrado, E., Vega, M., Deran, L., & Tascon, M. L. (1994). Voltammetric complexation capacity of waters of the Pisuerga river. Water Research, 28(10), 2139–2146.

    Article  CAS  Google Scholar 

  • Plavsic, M., Cosovic, B., & Lee, C. (2006). Copper complexing properties of melanoidins and marine humic material. The Science of the Total Environment, 366(1), 310–319. doi:10.1016/j.scitotenv.2005.07.011.

    Article  CAS  Google Scholar 

  • Pourret, O., & Martinez, R. E. (2000). Modelling lanthanide series binding sites on humic acid. Journal of Colloid and Interface Science, 330, 45–50. doi:10.1016/j.jcis.2008.10.048. 2009.

    Article  Google Scholar 

  • Prado, A. G. S., Torres, J. D., & Faria, P. A. (2006). Studies on copper(II)- and zinc(II)-mixed ligand complexes of humic acid. Journal of Hazardous Materials, 136(3), 585–588. doi:10.1016/j.jhazmat.2005.12.035.

    Article  CAS  Google Scholar 

  • Ram, N., & Raman, K. V. (1983). Characterization of metal-humic and -fulvic acid complexes. Pédologie, 33(2), 137–145.

    CAS  Google Scholar 

  • Rey, F., Machado, A. A. S. C., Arce, F., Ferreira, M. A., & Toja, A. (1995). Influence of the concentration on the conductimetric properties of a fulvic acid system. Analytica Chimica Acta, 304(3), 375–380. doi:10.1016/0003-2670(94)00642-Y.

    Article  CAS  Google Scholar 

  • Riffaldi, R., Levi-Minzi, R., & Saviozzi, A. (1983). Humic fractions of organic wastes. Agriculture, Ecosystems & Environment, 10(4), 353–359. doi:10.1016/01678809(83)90086-5.

    Article  CAS  Google Scholar 

  • Ruziç, I. (1982). Theoretical Aspects of the Direct Titration of Natural Waters and Its Information Yield for Trace Metal Speciation. Analytica Chimica Acta, 140(1), 99–113.

    Article  Google Scholar 

  • Saied, S., Siddique, A., Mumtaz, M., & Ali, K. (2005). Study of the heavy metal pollution treatment potential of the coal generated humic acid. Journal of Basic and Applied Sciences, 1(2), 101–103.

    CAS  Google Scholar 

  • Schnitzer, M., & Gupta, U. C. (1965). Determination of acidity in soil organic matter. Soil Science Society of America Journal, 29, 274–277.

    Article  CAS  Google Scholar 

  • Schnitzer, M., & Khan, S. U. (1972). Humic substances in the environment. New York: Marcel Dekker.

    Google Scholar 

  • Senesi, N. (1992). Metal-humic substance complexes in the environment. Molecular and mechanistic aspects by multiple spectroscopic approaches. In D. C. Adriano (Ed.), Biogeochemistry of trace metals (pp. 429–496). Boca Raton: Lewis.

    Google Scholar 

  • Senesi, N., Miano, T. M., & Brunetti, G. (1996). Humic substances in organic amendments and effects on native soil humic substances. In A. Piccolo (Ed.), Humic substances in terrestrial ecosystems (pp. 31–593). Amsterdam: Elsevier.

    Google Scholar 

  • Senesi, N., & Loffredo, E. (2005). Metal ion complexation by soil humic substances. In M. A. Tabatabai & D. L. Sparks (Eds.), Chemical processes in soils (pp. 563–617). Madison: Soil Science Society of America.

    Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions (2nd ed.). New York: Wiley.

    Google Scholar 

  • Swift, R. S. (1996). In D. L. Sparks (Ed.), Methods of soil analysis, part 3, chemical methods (pp. 1011–1069). Madison: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Terbouche, A., Djebbar, S., Benali-Baitich, O., & Bouet, G. (2010). Characterization and complexing capacity of humic acid extracted from Yakouren soil with heavy metals by conductimetry and quenching of fluorescence. Soil and Sediment Contamination, 19(1), 21–41. doi:101080/15320380903401724.

    CAS  Google Scholar 

  • Terkhi, M. C., Taleb, F., Gossart, P., Semmoud, A., & Addou, A. (2008). Fourier transform infrared study of mercury interaction with carboxyl groups in humic acids. Journal of Photochemistry and Photobiology A: Chemistry, 198(2), 205–214. doi:10.1016/j.jphotochem.2008.03.018.

    Article  CAS  Google Scholar 

  • Tipping, E. (2002). Cation binding by humic substances. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tipping, E., Rey-Castro, C., Brayan, S., & Hamilton-Taylor, J. (2002). Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochimica et Cosmochimica Acta, 66(18), 3211–3224. doi:10.1016/S0016-7037(02)00930-4.

    Article  CAS  Google Scholar 

  • Valenta, P. (1983). Voltammetric studies on trace metal speciation in natural waters. Part I. In G. G. Leppard (Ed.), Methods in trace speciation in surface waters (pp. 49–70). New York: Plenum.

    Google Scholar 

  • Van Leeuwen, H. P., Cleven, R. M. F. J., & Valenta, P. (1991). Conductometric analysis of polyelectrolytes in solution. Pure and Applied Chemistry, 63(9), 1251–126.

    Article  Google Scholar 

  • Witwicki, M., Jaszewski, A. R., Jezierska, J., Jerzykiewicz, M., & Jezierski, A. (2008). The pH-induced shift in the g-tensor components of semiquinone-type radicals in humic acids – DFT and EPR studies. Chemical Physics Letters, 462(6), 300–306. doi:10.1016/j.cplett.2008.07.086.

    Article  CAS  Google Scholar 

  • Wu, F., Cai, Y., Evans, D., & Dillon, P. (2004). Complexation between Hg(II) and dissolved organic matter in stream waters: an application of fluorescence spectroscopy. Biogeochemistry, 71(3), 339–351. doi:10.1007/s10533-004-0058-5.

    Article  CAS  Google Scholar 

  • Zhao, J., & Nelson, D. J. (2005). Fluorescence study of the interaction of Suwannee river fulvic acid with metal ions and Al3+-metal ion competition. Journal of Inorganic Biochemistry, 99(2), 383–396. doi:10.1016/j.jinorgbio.2004.10.005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Hauchard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terbouche, A., Djebbar, S., Benali-Baitich, O. et al. Complexation Study of Humic Acids Extracted from Forest and Sahara Soils with Zinc (II) and Cadmium (II) by Differential Pulse Anodic Stripping Voltammetry (DPASV) and Conductimetric Methods. Water Air Soil Pollut 216, 679–691 (2011). https://doi.org/10.1007/s11270-010-0562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0562-2

Keywords

Navigation