Skip to main content

Advertisement

Log in

Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments. It was evident that Cu, Pb, and Zn started to desorb at a higher pH from calcareous soils than from soils with low carbonate content. The mechanism responsible for this is co-precipitation of heavy metals in the carbonates. When the carbonates are dissolved at a relatively high pH of about 5, the co-precipitated heavy metals are released. The sequential extraction pattern for Cr differed generally much from the other heavy metals since the majority of Cr was extracted in the last two steps. Cr was also the heavy metal that desorbed the least at high acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alloway, B. J. (1995). Soil processes and the behaviour of heavy metals. In B. J. Alloway (Ed.), Heavy metals in soils. London: Blackie Academic & Professional.

    Google Scholar 

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Competitive sorption and desorption of heavy metals by individual soil components. Journal of Hazardous Materials, 140, 308–315. doi:10.1016/j.jhazmat.2006.09.018.

    Article  CAS  Google Scholar 

  • De Vries, W., Posch, M., & Kämäri, J. (1989). Simulation of the long-term soil response to acid deposition in various buffer ranges. Water, Air, and Soil Pollution, 48(3–4), 349–390. doi:10.1007/BF00283336.

    Google Scholar 

  • Dohrmann, R. (2006). Cation exchange capacity methodology I: an efficient model for the detection of incorrect cation exchange capacity and exchangeable cation results. Applied Clay Science, 34, 31–37. doi:10.1016/j.clay.2005.12.006.

    Article  CAS  Google Scholar 

  • García-Delgado, R. A., García-Herruzo, F., Rodríguez-Maroro, J. M., & Vereda, C. (1996). Influence of soil carbonates in lead fixation. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering & Toxic and Hazardous Substance Control, 31(9), 2099–2109.

    Google Scholar 

  • Jensen, P. E., Ottosen, L. M., & Pedersen, A. J. (2006). Speciation of Pb in industrially polluted soils. Water, Air, and Soil Pollution, 170, 359–382. doi:10.1007/s11270-005-9008-7.

    Article  CAS  Google Scholar 

  • Kliem, B. K., & Hansen, L. (2000). Electrodialytic soil remediation in a small pilot plant (Part II). Extractions, IR, XRD, TEM and SEM investigations on untreated and EDR-treated Cu-polluted soil. In: B. K. Kliem, Bonding of heavy metals in soil, Ph.D. thesis, Technical University of Denmark, August 2000.

  • Köleli, N. (2004). Speciation of chromium in 12 agricultural soils from Turkey. Chemosphere, 57, 1473–1478. doi:10.1016/j.chemosphere.2004.08.068.

    Article  Google Scholar 

  • Lock, K., & Janssen, C. R. (2003). Influence of ageing on zinc bioavailability in soils. Environmental Pollution, 126, 371–374. doi:10.1016/S0269-7491(03)00232-X.

    Article  CAS  Google Scholar 

  • Loeppert, R.H., Suarez, D.L. (1995) Methods of Soil Analysis. Part 3. Chemical Methods—SSSA Book series No. 5, 451–455.

  • Lund, U., & Fobian, A. (1991). Pollution of two soils by arsenic, chromium and copper, Denmark. Geoderma, 49, 83–103. doi:10.1016/0016-7061(91)90093-9.

    Article  CAS  Google Scholar 

  • Madrid, L., & Diaz-Barrientos, E. (1992). Influence of carbonate on the reaction of heavy metals in soils. Journal of Soil Science, 43, 709–721.

    Article  CAS  Google Scholar 

  • Markiewicz-Patkowska, J., Hursthouse, A., & Przybyla-Kij, H. (2005). The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environment International, 31, 513–521. doi:10.1016/j.envint.2004.09.004.

    Article  CAS  Google Scholar 

  • Martínez, C. E., & Motto, H. L. (2000). Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution, 107, 153–158. doi:10.1016/S0269-7491(99)00111-6.

    Article  Google Scholar 

  • Mesquita, M. E., & Carranca, C. (2005). Effect of dissolved organic matter on copper zinc competitive adsorption by a sandy soil at different pH values. Environmental Technology, 26(9), 1065–1072. doi:10.1080/09593332608618493.

    Article  CAS  Google Scholar 

  • Mester, Z., Cremisini, C., Ghiara, E., & Morabito, R. (1998). comparison of two sequential extraction procedures for metal fractionation in sediment samples. Analytica Chimica Acta, 359, 133–142. doi:10.1016/S0003-2670(97)00687-9.

    Article  CAS  Google Scholar 

  • Miljøstyrelsen (2003). Liste over kvalitetskriterier i relation til forurenet jord (A list of quality criteria in relation to polluted soil) In Danish.

  • Ottosen, L. M., Hansen, H. K., Ribeiro, A. B., & Villumsen, A. (2001). Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils. Journal of Hazardous Materials, B85, 291–299. doi:10.1016/S0304-3894(01)00231-X.

    Article  Google Scholar 

  • Ottosen, L. M., Kubal, M., & Lepkova, K. (2006). Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil. Journal of Hazardous Materials, 137(1), 113–120. doi:10.1016/j.jhazmat.2005.04.044.

    Article  CAS  Google Scholar 

  • Saeed, M., & Fox, R. L. (1977). Relations between suspension pH and Zn solubility in acid and calcareous soils. Soil Science, 124, 199–204. doi:10.1097/00010694-197710000-00002.

    Article  CAS  Google Scholar 

  • Schnitzer, M., & Kerndorff, H. (1980). Effects of pollution on humic substances. Environ Sci Health B, 15(4), 431–456.

    Article  CAS  Google Scholar 

  • Zhang, P., Ryan, J. R., & Yang, J. (1998). In Vitro soil Pb solubility in the presence of hydroxyapatite. Environmental Science & Technology, 32, 2763–2768.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisbeth M. Ottosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottosen, L.M., Hansen, H.K. & Jensen, P.E. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils. Water Air Soil Pollut 201, 295–304 (2009). https://doi.org/10.1007/s11270-008-9945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9945-z

Keywords

Navigation