Water, Air, and Soil Pollution

, Volume 178, Issue 1, pp 69–77

Temporal Trends of Trace Metals in Sediment and Invertebrates from Stormwater Management Ponds

  • Ryan E. Casey
  • Judith A. Simon
  • Stephanie Atueyi
  • Joel W. Snodgrass
  • Natalie Karouna-Renier
  • Donald W. Sparling
Original Article

DOI: 10.1007/s11270-006-9132-z

Cite this article as:
Casey, R.E., Simon, J.A., Atueyi, S. et al. Water Air Soil Pollut (2007) 178: 69. doi:10.1007/s11270-006-9132-z

Abstract

Stormwater ponds are an increasingly common feature in urban landscapes. Because these ponds retain runoff and particulate-bound contaminants from impervious surfaces, organisms inhabiting stormwater ponds may be exposed to elevated metal levels in sediments. This study evaluated temporal changes in sediment and macroinvertebrate Cu, Pb and Zn over an eleven-year period with specific attention to land use in pond watersheds. Sediment and invertebrate metal levels were quantified using atomic absorption spectrophotometry (1993 samples) or inductively coupled plasma mass spectrometry (2003–2004 samples). Sediment trace element levels did not significantly change from 1993 to 2003-2004 with the exception of Zn in ponds receiving runoff from highways, which increased from a mean of 32 mg kg−1 in 1993 to 344 mg kg−1 in 2003–2004. Sediment Pb and Cu generally remained below published threshold effects concentrations (TEC) except for two instances of elevated Cu in 2003–2004. Zn remained below the TEC in 1993 but exceeded the TEC in six ponds in 2003–2004. Trace metal body burdens varied among invertebrate groups, and to a lesser extent among land uses, but in both cases this variation was a function of year. In general, trace element body burdens were more similar among invertebrate groups or land use or both during 2003–2004 when compared to levels in 1993. Our results suggest sediment and invertebrate trace metal levels are at steady state in these stormwater management ponds and that risk to organisms inhabiting these ponds does not vary as a function of pond age.

Keywords

InvertebratesMetalsMetalsRetention pondsMetals SedimentsMetalsUrbanization

Copyright information

© Springer Science + Business Media, B.V. 2006

Authors and Affiliations

  • Ryan E. Casey
    • 1
  • Judith A. Simon
    • 2
  • Stephanie Atueyi
    • 1
  • Joel W. Snodgrass
    • 2
  • Natalie Karouna-Renier
    • 3
  • Donald W. Sparling
    • 4
  1. 1.Department of ChemistryTowson UniversityTowsonUSA
  2. 2.Department of Biological SciencesTowson UniversityTowsonUSA
  3. 3.Center for Environmental DiagnosticsUniversity of West FloridaPensacolaUSA
  4. 4.Department of ZoologySouthern Illinois UniversityCarbondaleUSA