Skip to main content

Advertisement

Log in

The Influence of Land Cover, Vertical Structure, and Socioeconomic Factors on Outdoor Water Use in a Western US City

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

To help inform urban water conservation and planning, we evaluated spatial patterns and correlative relationships among physical land cover properties, socioeconomic and demographic characteristics, and single-family outdoor residential water use in Aurora, Colorado, a rapidly-growing suburb in the semi-arid Colorado Front Range. Using high resolution land cover maps and lidar-derived vertical structural data, we quantified land cover composition and vertical structural characteristics for detached, single-family residential parcels. These data were combined with socioeconomic and demographic datasets from the 2010 US Census and local government agencies and used in Random Forest analyses of outdoor water use estimated from residential water meter records, with separate analyses conducted using parcels and census block groups as sampling units. Conditional variable importance measures from Random Forest analyses and comparisons of the predictive accuracy of models developed using subsets of explanatory variables were used to assess the relative importance of physical and socioeconomic variables in predicting outdoor water use. Models developed using the subset of land cover variables had the highest predictive accuracy, followed by vertical structural variables, and lastly, socioeconomic/demographic variables. At both the parcel and census block group scale, there was significant spatial clustering in outdoor water use as indicated by various spatial statistical analyses. Our approach demonstrates the value of high resolution land cover and structure data for understanding urban water use patterns and can be used for targeting water conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

References

  • Arbués F, García-Valiñas MA, Martínez-Espiñeira R (2003) Estimation of residential water demand: a state-of-the-art review. J Socio-Econ 32:81–102. doi:10.1016/S1053-5357(03)00005-2

    Article  Google Scholar 

  • Balling RC, Cubaque HC (2009) Estimating future residential water consumption in Phoenix, Arizona based on simulated changes in climate. Phys Geogr 30:308–323

    Article  Google Scholar 

  • Balling RC, Gober P, Jones N (2008) Sensitivity of residential water consumption to variations in climate: an intraurban analysis of Phoenix, Arizona. Water Resour Res 44:W10401. doi:10.1029/2007wr006722

    Article  Google Scholar 

  • Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD (2008) Human-induced changes in the hydrology of the western United States. Science 319:1080–1083. doi:10.1126/science.1152538

    Article  Google Scholar 

  • Berland A, Manson SM (2013) Patterns in residential urban forest structure along a synthetic urbanization gradient. Ann Assoc Am Geogr 103:749–763. doi:10.1080/00045608.2013.782598

    Article  Google Scholar 

  • Boone C, Cadenasso M, Grove J, Schwarz K, Buckley G (2010) Landscape, vegetation characteristics, and group identity in an urban and suburban watershed: why the 60’s matter. Urban Ecosyst 13:255–271. doi:10.1007/s11252-009-0118-7

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Brookshire DS, Colby B, Ewers M, Ganderton PT (2004) Market prices for water in the semiarid west of the United States. Water Resour Res 40:W09S04. doi:10.1029/2003wr002846

    Google Scholar 

  • Brown TC (2006) Trends in water market activity and price in the western United States. Water Resour Res 42:W09402. doi:10.1029/2005wr004180

    Google Scholar 

  • Cook EM, Hall SJ, Larson KL (2012) Residential landscapes as social-ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst 15:19–52. doi:10.1007/s11252-011-0197-0

    Article  Google Scholar 

  • Corbella HM, Pujol DS (2009) What lies behind domestic water use?: a review essay on the drivers of domestic water consumption. Bol Asoc Geógrafos Esp 50:297–314

    Google Scholar 

  • de Maria André D, Carvalho J (2014) Spatial determinants of urban residential water demand in Fortaleza, Brazil. Water Resour Manag 28:2401–2414. doi:10.1007/s11269-014-0551-0

    Article  Google Scholar 

  • Diaz-Uriarte R, Alvarez de Andres S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinf 7:3. doi:10.1186/1471-2105-7-3

    Article  Google Scholar 

  • Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban environment: microclimatic analysis and benefits. Energy Build 35:69–76. doi:10.1016/S0378-7788(02)00081-6

    Article  Google Scholar 

  • Doesken NJ, Pielke RA, Bliss OAP (2003) Climatography of the United States no. 60. Colorado Climate Center, Atmospheric Science Department, Colorado State University, Fort Collins

    Google Scholar 

  • Ferguson BC, Frantzeskaki N, Brown RR (2013) A strategic program for transitioning to a water sensitive city. Landsc Urban Plan 117:32–45. doi:10.1016/j.landurbplan.2013.04.016

    Article  Google Scholar 

  • Fielding KS, Russell S, Spinks A, Mankad A (2012) Determinants of household water conservation: the role of demographic, infrastructure, behavior, and psychosocial variables. Water Resour Res 48:W10510. doi:10.1029/2012wr012398

    Article  Google Scholar 

  • Franczyk J, Chang H (2009) Spatial analysis of water use in Oregon, USA, 1985–2005. Water Resour Manag 23:755–774. doi:10.1007/s11269-008-9298-9

    Article  Google Scholar 

  • Gage EA (2014) A multi-scale analysis of vegetation and irrigation heterogeneity effects on ecohydrological function and ecosystem services in a semi-arid urban area. Dissertation, Colorado State University, Fort Collins, CO

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206

    Article  Google Scholar 

  • Githinji LJM, Dane JH, Walker RH (2009) Water-use patterns of tall fescue and hybrid bluegrass cultivars subjected to ET-based irrigation scheduling. Irrig Sci 27:377–391. doi:10.1007/s00271-009-0153-4

    Article  Google Scholar 

  • Grafton RQ, Ward MB, To H, Kompas T (2011) Determinants of residential water consumption: evidence and analysis from a 10-country household survey. Water Resour Res 47:W08537. doi:10.1029/2010wr009685

    Article  Google Scholar 

  • Guan H, Li J, Chapman M, Deng F, Ji Z, Yang X (2013) Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. Int J Remote Sens 34:5166–5186. doi:10.1080/01431161.2013.788261

    Article  Google Scholar 

  • Hansen A, Rasker R, Maxwell B, Rotella J, Johnson J, Parmenter A, Langner U, Cohen W, Lawrence R, Kraska M (2002) Ecological causes and consequences of demographic change in the New West. Bioscience 52:151–162

    Article  Google Scholar 

  • Hapfelmeier A, Ulm K (2013) A new variable selection approach using random forests. Comput Stat Data Anal 60:50–69. doi:10.1016/j.csda.2012.09.020

    Article  Google Scholar 

  • Harlan SL, Yabiku ST, Larsen L, Brazel AJ (2009) Household water consumption in an arid city: affluence, affordance, and attitudes. Soc Nat Resour 22:691–709. doi:10.1080/08941920802064679

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) Random forests. In: The elements of statistical learning. Springer Series in Statistics. Springer, New York, NY, pp 587–604. doi:10.1007/978-0-387-84858-7_15

  • Healy RW, Scanlon BR (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • House-Peters LA, Chang H (2011) Urban water demand modeling: review of concepts, methods, and organizing principles. Water Resour Res 47:W05401. doi:10.1029/2010wr009624

    Article  Google Scholar 

  • House-Peters L, Pratt B, Chang H (2010) Effects of urban spatial structure, sociodemographics, and climate on residential water consumption in Hillsboro, Oregon. J Am Water Resour Assoc 46:461–472. doi:10.1111/j.1752-1688.2009.00415.x

    Google Scholar 

  • Janmaat J (2013) Spatial patterns and policy implications for residential water use: an example using Kelowna, British Columbia. Water Resour Econ 1:3–19. doi:10.1016/j.wre.2013.03.003

    Article  Google Scholar 

  • Kenney DS, Goemans C, Klein R, Lowrey J, Reidy K (2008) Residential water demand management: lessons from Aurora, Colorado. J Am Water Resour Assoc 44:192–207. doi:10.1111/j.1752-1688.2007.00147.x

    Article  Google Scholar 

  • Larson K, Cook E, Strawhacker C, Hall S (2010) The influence of diverse values, ecological structure, and geographic context on residents’ multifaceted landscaping decisions. Hum Ecol 38:747–761. doi:10.1007/s10745-010-9359-6

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. Bioscience 52:19–30

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2:18–22

    Google Scholar 

  • Litvak E, Bijoor NS, Pataki DE (2014) Adding trees to irrigated turfgrass lawns may be a water-saving measure in semi-arid environments. Ecohydrology 7:1314–1330. doi:10.1002/eco.1458

    Google Scholar 

  • Mayer PW, DeOreo WB, Opitz EM, Kiefer JC, Davis WY, Dziegielewski B, Nelson JO (1999) Residential end uses of water. American Water Works Association Research Foundation, Denver

    Google Scholar 

  • Nieswiadomy ML (1992) Estimating urban residential water demand - effects of price structure, conservation, and education. Water Resour Res 28:609–615. doi:10.1029/91wr02852

    Article  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24

    Google Scholar 

  • Oke TR (1989) The micrometeorology of the urban forest. Philos Trans R Soc Lond B Biol Sci 324:335–349

    Article  Google Scholar 

  • O’Neil-Dunne JPM, MacFaden SW, Royar AR, Pelletier KC (2012) An object-based system for LiDAR data fusion and feature extraction. Geocarto Int 28:227–242

    Article  Google Scholar 

  • Panagopoulos GP, Bathrellos GD, Skilodimou HD, Martsouka FA (2012) Mapping urban water demands using multi-criteria analysis and GIS. Water Resour Manag 26:1347–1363. doi:10.1007/s11269-011-9962-3

    Article  Google Scholar 

  • Polebitski AS, Palmer RN (2009) Seasonal residential water demand forecasting for census tracts. J Water Resour Plan Manag 136:27–36

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing version 2.15, 215th edn. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rinaudo J-D, Neverre N, Montginoul M (2012) Simulating the impact of pricing policies on residential water demand: a Southern France case study. Water Resour Manag 26:2057–2068

    Article  Google Scholar 

  • Russell S, Fielding K (2010) Water demand management research: a psychological perspective. Water Resour Res 46:W05302. doi:10.1029/2009wr008408

    Article  Google Scholar 

  • Shashua-Bar L, Pearlmutter D, Erell E (2011) The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int J Climatol 31:1498–1506. doi:10.1002/joc.2177

    Article  Google Scholar 

  • Shugart H, Saatchi S, Hall F (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res (G Biogeosci) 115. doi:10.1029/2009JG000993

  • Smardon RC (1988) Perception and aesthetics of the urban environment: review of the role of vegetation. Landsc Urban Plan 15:85–106. doi:10.1016/0169-2046(88)90018-7

    Article  Google Scholar 

  • St. Hilaire R, Arnold MA, Wilkerson DC, Devitt DA, Hurd BH, Lesikar BJ, Lohr VI, Martin CA, McDonald GV, Morris RL, Pittenger DR, Shaw DA, Zoldoske DF (2008) Efficient water use in residential urban landscapes. HortSci 43:2081–2092

    Google Scholar 

  • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinf 8:1–21. doi:10.1186/1471-2105-8-25

    Article  Google Scholar 

  • Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol Methods 14:323–348. doi:10.1037/a0016973

    Article  Google Scholar 

  • Wentz EA, Gober P (2007) Determinants of small-area water consumption for the city of Phoenix, Arizona. Water Resour Manag 21:1849–1863. doi:10.1007/s11269-006-9133-0

    Article  Google Scholar 

  • Wheeler SM (2008) The evolution of built landscapes in metropolitan regions. J Plan Educ Res 27:400–416

    Article  Google Scholar 

  • Xiao Q, McPherson EG, Simpson JR, Ustin SL (1998) Rainfall interception by Sacramento’s urban forest. J Arboric 24:235–244

    Google Scholar 

Download references

Acknowledgments

Support for this research was provided by the City of Aurora and Aurora Water and a student research grant from the Colorado State University Colorado Water Center. Special thanks to Dawn Jewell, Dan Gallen, and Lisa Darling with Aurora Water; Dan Ault and Branden Effland with Deere and Ault Engineers; and John Dingess for technical and logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Gage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gage, E., Cooper, D.J. The Influence of Land Cover, Vertical Structure, and Socioeconomic Factors on Outdoor Water Use in a Western US City. Water Resour Manage 29, 3877–3890 (2015). https://doi.org/10.1007/s11269-015-1034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-015-1034-7

Keywords

Navigation