Skip to main content
Log in

Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The paper presents how to solve some practical problems of water planning in a medium/large river basin, such as: the water resources assessment and its spatial-temporal variability over the long-short term, the impact of human activities on the water cycle, due to groundwater pumping and water returns into aquifers, the river-aquifer interactions and the aquifer depletion. It is based on the use of a new monthly conceptual distributed water balance model -PATRICAL- that includes the surface water (SW), groundwater (GW) behavior and the river-aquifer interaction. The model is applied to the Júcar River Basin District (RBD) in Spain (43,000 km2), with more than 250 aquifers, including catchments with humid climates (Júcar RBD northern), semiarid and arid catchments (southern). The model has a small number of parameters and obtains a satisfactory performance in SW and GW behavior. It has been calibrated/validated using monthly streamflows and two additional elements not generally used in models for large river basins, GW levels and river-aquifer interactions. In the hydrological time series of the Júcar RBD headers a statistical change point in the year 1979/80 is detected. It is due to changes in precipitation patterns and represents a 40 % of reduction in streamflows in relation with the previous period. The impact of GW pumping in all aquifers is determined, the ‘Mancha Oriental’ aquifer produces a significant reduction in streamflows of the Júcar river –around 200–250 hm3/year. The GW level in the ‘Villena-Benejama’ aquifer -Vinalopo Valley- has declined more than 200 m in last 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, Rome

  • Bladé I and Castro-Díez Y (2010) Atmospheric trends in the Iberian Peninsula during the instrumental period in the context of natural variability. In: Pérez FF and Boscolo R (Ed) Climate in Spain: past, present and future, 25–41

  • Christensen S, Zlotnik VA, Tartakovsky DM (2009) Optimal design of pumping tests in leaky aquifers for stream depletion analysis. J Hydrol 375:554–565

    Article  Google Scholar 

  • EC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, L-327 Luxembourg

  • Edsel BD, Camp JV, LeBoeuf EJ, Penrod JR, Dobbins JP, Abkowitz MD (2011) Watershed modeling and its applications: a state-of-the-art review. Open Hydrol J 5:26–50

    Article  Google Scholar 

  • Ehlschlaeger (1989) Using the A* Search Algorithm to Develop Hydrologic Models from Digital Elevation Data. Proceedings of International Geographic Information Systems (IGIS) Symposium '89, 275–281. Baltimore

  • Estrela T and Quintas L (1996) A distributed hydrological model for water resources assessment in large basins. Proceedings of 1st Intenational Conference on Rivertech 96. IWRA 2:861–868. Chicago

  • Estrela T, Cabezas F, Estrada F (1999) La evaluación de recursos hídricos en el Libro Blanco del Agua en España. Rev Ing Agua 6(2):125–138

    Google Scholar 

  • Estrela T, Pérez-Martín MA, Vargas E (2012) Impacts of climate change on water resources in Spain. Hydrol Sci J 57(6):1154–1167. doi:10.1080/02626667.2012.702213

    Article  Google Scholar 

  • Feng-Wen C, Chen-Wuing L (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. doi:10.1007/s10333-012-0319-1

    Google Scholar 

  • Ferrer J, Pérez-Martín MA, Jiménez S, Estrela T, Andreu J (2012) GIS based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects. Science of the Total Environment. doi: 10.1016/j.scitotenv.2012.08.032

  • Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33:1291–1295

    Article  Google Scholar 

  • Font E, Pérez-Martín MA, Estrela T and Ferrer J (2004) Modelo hidrogeológico del acuífero de la Mancha Oriental para el análisis de los efectos de las diferentes alternativas de sustitución de extracciones por aguas superficiales. VIII Simposio de Hidrogeología. Zaragoza

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139

    Article  Google Scholar 

  • Huang F, Liu D, Tan X, Wang J, Chen Y, He B (2011) Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster – based parallel GIS. Comput Geosci 37:426–434

    Article  Google Scholar 

  • Ivkovic KM (2009) A top–down approach to characterise aquifer–river interaction processes. J Hydrol 365:145–155

    Article  Google Scholar 

  • Khaliqa MN, Ouardab TBMJ (2007) On the critical values of the standard normal homogeneity test (SNHT). Int J Climatol 27:681–687

    Article  Google Scholar 

  • Martín-de-Luis M, Brunetti M, Gonzalez-Hidalgo JC, Longares LA, Martin-Vide J (2010) Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob Planet Chang 74:27–33

    Article  Google Scholar 

  • Mays LW (2013) Groundwater resources sustainability: past, present, and future. Water Resour Manag 27:4409–4424. doi:10.1007/s11269-013-0436-7

    Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Technical Manual of Water Resources Investigation, Book 6, US Geological Survey, Reston

  • Mejías M, Ballesteros BJ, Antón-Pacheco C, Domínguez JA, Garcia-Orellana J, Garcia-Solsona E, Masqué P (2012) Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. J Hydrol 464–465:27–40

    Article  Google Scholar 

  • Milano M, Ruelland D, Fernandez S, Dezetter A, Fabre J, Servat E (2012) Facing climatic and anthropogenic changes in the Mediterranean basin: What will be the medium-term impact on water stress? Geoscience 344:432–440

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Am Soc Agric Biol Eng 50(3):885–900. doi:10.13031/2013.23153

    Google Scholar 

  • Murray SJ, Foster PN, Prentice IC (2012) Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. J Hydrol 448–449:14–29

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I: a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Paiva RCD, Buarque DC, Collischonn W, Bonnet MP, Frappart F, Calmant S, Mendes CAB (2013) Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour Res 49:1226–1243. doi:10.1002/wrcr.2006

    Article  Google Scholar 

  • Pérez-Martín MA (2005) Modelo distribuido de simulación del ciclo hidrológico con calidad de aguas integrado en sistemas de información geográfica para grandes cuencas. Aportación al análisis de presiones e impactos de la Directiva Marco Europea del Agua. Ph.D. Thesis, Universitat Politécnica de Valencia, Spain

  • Pérez-Martín MA, Estrela T, del-Amo P (2012) Definition of Environmental Objectives in Relation with Nitrate Pollution in the Aquifers of Spain. Simulation Model and Scenarios used. International Congress on Environmental Modelling and Software (iEMSs2012), Leipzig

  • Pérez-Martín MA, Thurston W, Estrela T, del-Amo P (2013) Cambios en las series hidrológicas de los últimos 30 años y sus causas. El Efecto 80. In: Valles-Moran et al. (Ed) III Jornadas de Ingeniería del Agua. Barcelona, 1:527–534

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104

    Article  Google Scholar 

  • Pokhrel P, Gupta HV, Wagener T (2008) A spatial regularization approach to parameter estimation for a distributed watershed model. Water Resour Res 44, W12419. doi:10.1029/2007WR006615

    Article  Google Scholar 

  • Reeves J, Chen J, Wang XL, Lund R, Lu Q (2007) A review and comparison of changepoint detection techniques for climate data. J Appl Meteorol Climatol 46

  • Samaniego L, Kumar R, Attinger S (2010) Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale. Water Resour Res 46, W05523

    Google Scholar 

  • Sanz D, Castaño S, Cassiraga E, Sahuquillo A, Gómez-Alday JJ, Peña S, Calera A (2011) Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeol J 19:475–487

    Article  Google Scholar 

  • Témez JR (1977) Modelo matemático de transformación precipitación-aportación. ASINEL

  • Theis CV (1940) The source of water derived from wells. Civ Eng ASCE 10:277–280

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. doi:10.2307/210739

    Article  Google Scholar 

  • UNEP (1992) World atlas of desertification. Edward Arnold, London

    Google Scholar 

  • Van Deursen WPA and Kwadijk JCJ (1993) Rhineflow: An integrated GIS water balance model for the river Rhine, HydroGIS 93: application of geographic information systems in hydrology and water resources, 507–518

  • Wang QJ, Pagano TC, Zhou SL, Hapuarachchi HAP, Zhang L, Robertson DE (2011) Monthly versus daily water balance models in simulating monthly runoff. J Hydrol 404:166–175

    Article  Google Scholar 

  • Werner AD, Zhang Q, Xue L, Smerdon BD, Li X, Zhu X, Yu L, Li L (2013) An initial inventory and indexation of groundwater mega-depletion cases. Water Resour Manag 27:507–533. doi:10.1007/s11269-012-0199-6

    Google Scholar 

  • Zhang L, Potter N, Hickel K, Zhang Y, Shao Q (2008) Water balance modeling over variable time scales based on the Budyko framework – model development and testing. J Hydrol 360(1–4):117–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Pérez-Martín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Martín, M.A., Estrela, T., Andreu, J. et al. Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain. Water Resour Manage 28, 4337–4358 (2014). https://doi.org/10.1007/s11269-014-0755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-014-0755-3

Keywords

Navigation