Skip to main content
Log in

Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Accelerated soil erosion is a threat for the societies due to the loss of ecosystems services. Soil erosion and sediment delivery have been assessed in a small catchment of Central Spain with a new water body, the Pareja Limno-reservoir, located in its outlet. This limno-reservoir was created in 2006 with environmental and recreational purposes in the riverine zone of a large reservoir. Sedimentation risk is an issue of concern regarding limno-reservoirs environmental feasibility. Thus, the study of the soil erosion in the Pareja Limno-reservoir catchment and its sediment delivery seemed of the utmost importance. In this paper we establish an affordable and simple methodology to address it. A soil erosion and deposition monitoring network was installed in the Ompólveda River basin (≈88 km2), which flows into the Pareja Limno-reservoir. Results obtained were related with those from a sedimentation study previously carried out in the limno-reservoir. Gross hillslope erosion in the catchment was 6.0 Mg ha−1 year−1, which is in agreement with values reported for Mediterranean areas. After subtraction of the deposition measured, a soil loss of 1.2 Mg ha−1 year−1 was found in the catchment. Sediment delivery ratio (SDR) was estimated to be 3.8 %. SDR is low as a result of the low connectivity between the stream network and the limno-reservoir. Some local characteristics may also have a secondary influence in the low SDR value. Results obtained support the environmental feasibility of the Pareja Limno-reservoir from the sedimentation risk perspective. They also demonstrate that the methodology followed allows the assessment of soil loss and sediment delivery at a catchment scale, and the identification of areas where the erosion problems are most severe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alatorre LC, Beguería S, García-Ruiz JM (2010) Regional scale modeling of hillslope sediment delivery: a case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM. J Hydrol 391:109–123

    Article  Google Scholar 

  • Alatorre LC, Beguería S, Lana-Renault N, Navas A, García-Ruiz JM (2012) Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrol Earth Syst Sci 16:1321–1334

    Article  Google Scholar 

  • Arévalo D (2008) Estimación de la erosión del suelo en la cuenca del Ompólveda. Bachelor of Science thesis dissertation, Universidad de Alcalá

  • Boardman J (1998) An average soil erosion rate for Europe: myth or reality? J Soil Water Conserv 53:46–50

    Google Scholar 

  • Butt MJ, Waqas A, Mahmood R (2010) The combined effect of vegetation and soil erosion in the water resource management. Water Resour Manag 24:3701–3714

    Article  Google Scholar 

  • Cerdà A (1999) Parent material and vegetation affect soil erosion in eastern Spain. Soil Sci Soc Am J 63:362–368

    Article  Google Scholar 

  • Cerdà A (2002) The effect of season parent material on water erosion on highly eroded soils in eastern Spain. J Arid Environ 52:319–337

    Article  Google Scholar 

  • Cerdà A (2007) Soil water erosion on road embankments in eastern Spain. Sci Total Environ 378:151–155

    Article  Google Scholar 

  • Cerdà A, Doerr SH (2007) Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol Process 21:2325–2336

    Article  Google Scholar 

  • Cerdà A, Giménez-Morera A, Bodí MB (2009) Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surf Process Landf 34:1822–1830

    Article  Google Scholar 

  • Cerdán O, Poesen J, Govers G, Saby N, LeBissonnais Y, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad FPM, Roxo MJ (2006) Sheet and rill erosion. In: Boardman J, Poesen J (eds) Soil erosion in Europe. John Wiley and Sons, Ltd, Chichester, pp 501–513

    Chapter  Google Scholar 

  • Cerdán O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad F, Raclot D, Ionita I, Rejman J, Rousseva S, Muxart T, Roxo M, Dostal T (2010) Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122:167–177

    Article  Google Scholar 

  • Chowdary VM, Chakraborthy D, Jeyaram A, Krishna Murthy YVN, Sharma JR, Dadhwal VK (2013) Multi-criteria decision making approach for watershed prioritization using analytic hierarchy process technique and GIS. Water Resour Manag 27:3555–3571

    Article  Google Scholar 

  • de Vente J, Poesen J, Verstraeten G (2005) The application of semiquantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain. J Hydrol 305:63–86

    Article  Google Scholar 

  • de Vente J, Verduyn R, Verstraeten G, Vanmaercke M, Poesen J (2011) Factors controlling sediment yield at the catchment scale in NW Mediterranean geoecosystems. J Soils Sediments 11:690–707

    Article  Google Scholar 

  • García Ruíz JM, López Bermúdez F (2009) La erosión del suelo en España. Sociedad Española de Geomorfología, Zaragoza

    Google Scholar 

  • Garg V, Jothiprakash V (2012) Sediment yield assessment of a large basin using PSIAC approach in GIS environment. Water Resour Manag 26:799–840

    Article  Google Scholar 

  • Haigh MJ (1977) The use of erosion pins in the study of slope evolution. In: Shorter Technical Methods (II), Technical Bulletin No 18, British Geomorphological Research Group, Geo Books, Norwich, UK, pp 31–49

  • Instituto de Desarrollo Regional (2008) Infraestructura de datos espaciales de Castilla-La Mancha-Zona de Descarga. http://ide.jccm.es/descargapnoa/. Accessed 25 Jan 2011

  • Jaiswal RK, Thomas T, Galkate RV, Ghosh NC, Singh S (2014) Watershed prioritization using Saaty’s AHP based decision support for soil conservation measures. Water Resour Manag 28:475–494

    Article  Google Scholar 

  • Marín C, Desir G (2010) Procesos de erosión en una zona de clima semiárido de la depresión del Ebro (Bárdenas Reales, NE de España). Rev C & G 24(3–4):61–70

    Google Scholar 

  • Martín-Fernández L, Martínez-Núñez M (2011) An empirical approach to estimate soil erosion risk in Spain. Sci Total Environ 409:3114–3123

    Article  Google Scholar 

  • Molina Navarro E (2013) Hydrology, limnology and environmental feasibilty of the Pareja Limno-reservoir. PhD thesis dissertation, Universidad de Alcalá

  • Molina-Navarro E, Martínez Pérez S, Sastre Merlín A (2010) El limnoembalse de Cola de Pareja (Guadalajara): aspectos medioambientales e hidrológicos. Bol Geol Min 121(1):69–80

    Google Scholar 

  • Molina-Navarro E, Trolle D, Martínez-Pérez S, Sastre-Merlín A, Jeppesen E (2014a) Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. J Hydrol 509:354–366

    Article  Google Scholar 

  • Molina-Navarro E, Martínez-Pérez S, Sastre-Merlín A, Bienes-Allas R (2014b) Hydrologic modeling in a small Mediterranean basin as a tool to assess the feasibility of a Limno-Reservoir. J Environ Qual 43(1):121–131

    Article  Google Scholar 

  • Molina-Navarro E, Martínez Pérez S, Sastre Merlín A, Bienes-Allas R (forthcoming 2014a) Taking advantage of a new hydraulic infrastructure to study the sediment yield in a small basin of central Spain. Cuad Investig Geogr, in press

  • Molina-Navarro E, Sastre-Merlín A, Vicente R, Martínez-Pérez S (forthcoming 2014b) Hydrogeology and hydrogeochemistry in a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain). Hydrogeol J. doi:10.1007/s10040-014-1113-5

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and Water Assessment Tool Theoretical Documentation. Version 2005. Agricultural Research Service and Blackland Research Center. Temple, Texas, USA

  • Official Journal of the European Union, 22 December 2000, number 327, page 1. Directive 2000/60/EC of 23 October 2000 establishing a framework for the Community action in the field of water policy. European Parliament and Council

  • Official Journal of the European Union, 28 January 2012, number 55, page 1. Directive 2011/92/EU of the European Parliament and of the Council of 13 December 2011 on the assessment of the effects of certain public and private projects on the environment (codification). European Parliament and Council

  • Porta i Casanellas J, López-Acevedo Reguerín M, Roquero de Laburu C (1994) Edafología para la agricultura y el medio ambiente. Mundi-Prensa, Madrid

    Google Scholar 

  • Prasannakumar V, Vijith H, Geetha N, Shiny R (2011) Regional scale erosion assessment of a Sub-tropical highland segment in the Western Ghats of Kerala, South India. Water Resour Manag 25:3715–3727

    Article  Google Scholar 

  • Quinton J, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3:311–314

    Article  Google Scholar 

  • Sancho C, Benito G, Gutiérrez M (1991) Agujas de erosión y perfiladores microtopográficos. Cuadernos técnicos de la S.E.G. Nº 2. Geoforma Ediciones, Logroño, Spain

  • Singh RK, Panda RK, Satapathy KK, Ngachan SV (2012) Runoff and sediment yield modelling for a treated hilly watershed in Eastern Himalaya using the water erosion prediction project model. Water Resour Manag 26:643–665

    Article  Google Scholar 

  • Solé Benet A (2006) Spain. In: Boardman J, Poesen J (eds) Soil erosion in Europe. John Wiley and Sons, Ltd., Chichester, pp 501–513

    Google Scholar 

  • Strahler AN (1986) Geografía Física, 8th edn. Omega, Barcelona

    Google Scholar 

  • Syvitski JPM, Peckham SD, Hilberman R, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment Geol 162:5–24

    Article  Google Scholar 

  • Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  Google Scholar 

  • Tamene L, Le QB, Vlek PLG (2014) A landscape planning and management tool for land and water resources management: an example application in northern Ethiopia. Water Resour Manag 28:407–424

    Article  Google Scholar 

  • Tetzlaff B, Wendland F (2012) Modelling sediment input to surface waters for German states with MEPhos: methodology, sensitivity and uncertainty. Water Resour Manag 26:165–184

    Article  Google Scholar 

  • Vanmaercke M, Maetens W, Poesen J, Jankauskas B, Jankauskiene G, Verstraeten G, de Vente J (2012) A comparison of measured catchment sediment yields with measured and predicted hillslope erosion rates in Europe. J Soils Sediments 12:586–602

    Article  Google Scholar 

  • Verstraeten G, Poesen J (2000) Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield. Prog Phys Geogr 24(2):219–251

    Article  Google Scholar 

  • World Commission on Dams (2000) Dams and development. A New framework for decision-making. Earthscan Publications Ltd, London

    Google Scholar 

  • Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agricultural Handbook No. 282. USDA, Washington, USA

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning, Agriculture Handbook, 537. US Department of Agriculture, Washington, DC, USA

  • Woznicki SA, Nejadhashemi AP (2013) Spatial and temporal variabilities of sediment delivery ratio. Water Resour Manag 27:2483–2499

    Article  Google Scholar 

  • Zarris D, Vlastara M, Panagoulia D (2011) Sediment delivery assessment for a transboundary mediterranean catchment: the example of Nestos River catchment. Water Resour Manag 25:3785–3803

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research came from the Social Acting of Ibercaja and the Government of Castilla-La Mancha (Science and Education Department, research project PAI08-0226-1758). Eugenio Molina-Navarro received additional support from a predoctoral grant from the University of Alcalá. The authors thank the Pareja City Council and the Confederación Hidrográfica del Tajo for their support, Diana Arévalo for kindly offering her soil data and Cristina Gonzalo and Javier López-Villalta for valuable editorial and English language comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Molina-Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina-Navarro, E., Martínez-Pérez, S., Sastre-Merlín, A. et al. Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology. Water Resour Manage 28, 2129–2143 (2014). https://doi.org/10.1007/s11269-014-0601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-014-0601-7

Keywords

Navigation