Skip to main content

Advertisement

Log in

Modeling Nonlinear Monthly Evapotranspiration Using Soft Computing and Data Reconstruction Techniques

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The objective of this study is to develop soft computing and data reconstruction techniques for modeling monthly California Irrigation Management Information System (CIMIS) evapotranspiration (ETo) at two stations, U.C. Riverside and Durham, in California. The nonlinear dynamics of monthly CIMIS ETo is examined using autocorrelation function, phase space reconstruction, and close returns plot. The generalized regression neural networks and genetic algorithm (GRNN-GA) conjunction model is developed for modeling monthly CIMIS ETo. Among different input variables considered, solar radiation (RAD) is found to be the most effective variable for modeling monthly CIMIS ETo using GRNN-GA for both stations. Adding other input variables to the best 1-input combination improves the model performance. The generalized regression neural networks and backpropagation algorithm (GRNN-BP) conjunction model is compared with the results of GRNN-GA for modeling monthly CIMIS ETo. Two bootstrap resampling methods are implemented to reconstruct the training data. Method 1 (1-BGRNN-GA) employs simple extensions of training data using the bootstrap resampling method. For each training data, method 2 (2-BGRNN-GA) uses individual bootstrap resampling of original training data. Results indicate that Method 2 (2-BGRNN-GA) improves modeling of monthly CIMIS ETo and is more stable and reliable than are GRNN-GA, GRNN-BP, and Method 1 (1-BGRNN-GA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abrahart RJ (2003) Neural network rainfall–runoff forecasting based on continuous resampling. J Hydroinform 5(1):51–61

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage, Paper No. 56. Food and Agriculture Organization of the United Nations, Rome

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere. Springer, NY

    Book  Google Scholar 

  • Cannas B, Fanni A, See L, Sias G (2006) Data processing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth 31(18):1164–1171

    Article  Google Scholar 

  • Coulibaly P, Anctil F, Aravena R, Bobee B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896

    Article  Google Scholar 

  • Dhanya CT, Nagesh Kumar D (2011) Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resour Res 47(6), W06507

    Google Scholar 

  • Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall, London

    Book  Google Scholar 

  • Gilmore CG (1993) A new test for chaos. J Econ Behav Organ 22(2):209–237

    Article  Google Scholar 

  • Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling. J Hydrol 377(1–2):80–91

    Article  Google Scholar 

  • Han D, Kwong T, Li S (2007) Uncertainties in real-time flood forecasting with neural networks. Hydrol Process 21(2):223–228

    Article  Google Scholar 

  • Haykin S (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, NJ

    Google Scholar 

  • Holzfuss J, Mayer-Kress G (1986) An approach to error-estimation in the application of dimension algorithms. In: Mayer-Kress G (ed) Dimensions and entropies in chaotic systems 32:114–122

  • Hsieh WW, Tang B (1998) Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull Am Meteorol Soc 79(9):1855–1870

    Article  Google Scholar 

  • Jain SK, Nayak PC, Sudheer KP (2008) Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol Process 22:2225–2234

    Article  Google Scholar 

  • Jayawardena AW, Lai F (1994) Analysis and prediction of chaos in rainfall and stream flow time series. J Hydrol 153(1–4):23–52

    Article  Google Scholar 

  • Jeong D, Kim YO (2005) Rainfall–runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol Process 19:3819–3835

    Article  Google Scholar 

  • Jia Y, Culver TB (2006) Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. J Hydrol 331:580–590

    Article  Google Scholar 

  • Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317

    Article  Google Scholar 

  • Kim HS, Yoon YN, Kim JH, Kim JH (2001) Searching for strange attractor in wastewater flow. Stoch Environ Res Risk Assess 15(5):399–413

    Article  Google Scholar 

  • Kim S, Shiri J, Kisi O (2012) Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour Manag 26(11):3231–3249

    Article  Google Scholar 

  • Kim S, Seo Y, Singh VP (2013a) Assesment of pan evaporation modeling using bootstrap resampling and soft computing methods. J Comput Civ Eng. doi:10.1061/(ASCE)CP.943–5487.000367

    Google Scholar 

  • Kim S, Shiri J, Kisi O, Singh VP (2013b) Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour Manag 27(7):2267–2286

    Article  Google Scholar 

  • Kim S, Singh VP, Seo Y (2013c) Evaluation of pan evaporation modeling with two different neural networks and weather station data. Theor Appl Climatol. doi:10.1007/s00704-013-0985-y

    Google Scholar 

  • Kisi O (2006) Generalized regression neural networks for evapotranspiration modeling. Hydrol Sci J 51(6):1092–1105

    Article  Google Scholar 

  • Kisi O (2007) Evapotranspiration modeling from climatic data using a neural computing technique. Hydrol Process 21:1925–1934

    Article  Google Scholar 

  • Kisi O, Ozturk O (2007) Adaptive neurofuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng 133:368–379

    Article  Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233

    Article  Google Scholar 

  • Kyoung MS, Kim HS, Sivakumar B, Singh VP, Ahn KS (2011) Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change. Stoch Environ Res Risk Assess 25(4):613–625

    Article  Google Scholar 

  • Liu Q, Islam S, Rodriguez-Iturbe I, Le Y (1998) Phase-space analysis of daily streamflow: characterization and prediction. Adv Water Resour 21:463–475

    Article  Google Scholar 

  • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15(1):101–124

    Article  Google Scholar 

  • Neuroshell 2 (1993) Ward systems group, Inc., MD

  • Olsson J, Niemczynowicz J, Berndtsson R (1993) Fractal analysis of high-resolution rainfall time series. J Geophys Res 98(D12):23265–23274

    Article  Google Scholar 

  • Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716

    Article  Google Scholar 

  • Rodriguez-Iturbe I, De Power FB, Sharifi MB, Georgakakos KP (1989) Chaos in rainfall. Water Resour Res 25(7):1667–1675

    Article  Google Scholar 

  • Salas JD, Kim HS, Eykholt R, Burlando P, Green T (2005) Aggregation and sampling in deterministic chaos: implications on dynamics of hydrological processes. Nonlinear Proc Geoph 12:557–567

    Article  Google Scholar 

  • Seo YM, Park KB, Kim S, Singh VP (2013) Application of bootstrap-based artificial neural networks to flood forecasting and uncertainty assessment. Proceedings of 6th International Perspective on Water Resources and the Environment, EWRI-ASCE, Izmir, Turkey

  • Sharma SK, Tiwari KN (2009) Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley catchment. J Hydrol 374:209–222

    Article  Google Scholar 

  • Singh VP (1988) Hydrologic system rainfall–Runoff modelling, vol 1. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227(1–4):1–20

    Article  Google Scholar 

  • Sivakumar B (2009) Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. Stoch Environ Res Risk Assess 23(7):1027–1036

    Article  Google Scholar 

  • Sivakumar B, Jayawardena AW, Fernando TMKG (2002) River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J Hydrol 265:225–245

    Article  Google Scholar 

  • Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576

    Article  Google Scholar 

  • Srivastav RK, Sudheer KP, Chaubey I (2007) A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour Res 43, W10407

    Google Scholar 

  • Sudheer KP, Gosain AK, Rangan DM, Saheb SM (2002) Modeling evaporation using an artificial neural network algorithm. Hydrol Process 16:3189–3202

    Article  Google Scholar 

  • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218

    Article  Google Scholar 

  • Tiwari MK, Chatterjee C (2010a) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382:20–33

    Article  Google Scholar 

  • Tiwari MK, Chatterjee C (2010b) Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J Hydrol 394:458–470

    Article  Google Scholar 

  • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239

    Article  Google Scholar 

  • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129:454–457

    Article  Google Scholar 

  • Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. John Wiley & Sons Inc., NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Singh, V.P., Seo, Y. et al. Modeling Nonlinear Monthly Evapotranspiration Using Soft Computing and Data Reconstruction Techniques. Water Resour Manage 28, 185–206 (2014). https://doi.org/10.1007/s11269-013-0479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-013-0479-9

Keywords

Navigation