Skip to main content
Log in

Regionalisation of Maximum Annual Runoff Using Hierarchical and Trellis Methods with Topographic Information

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Regional frequency approaches are frequently proposed in order to estimate runoff quantiles for non-gauged catchments. Partitioning methods such as cluster analysis are often applied in order to regionalize catchments using topography, soil and hydroclimatological characteristics. This paper aims to construct a mean regional frequency curve for annual maximum runoffs, using topographic descriptors for cluster analysis. Both trellis and hierarchical classifications partitioning methods are performed using basin area; basin perimeter; characteristic length; global slope index; compaction index; specific gradient slope and geodesic coordinates as attributes. To build the distance measures, various multidimensional spaces are considered with pairs or triplets of attributes. Resulting clusters were checked for hydrological homogeneity using the test of Hosking and Wallis based on L-moments estimates. A sample of 40 Tunisian gauged basins covering a range of areas from 56 to 16483 km2 has been considered to achieve these purposes. The classification and the test of Hosking and Wallis concluded for separating the gauged basins in two hydrological homogeneous regions. Also, the basin global slope index is found as the main discriminating classification factor. Further, regional quantiles of the standardized maximum annual flood (index flood) were estimated using GEV distribution. The two regional curves are distinguishable for extremes events, suggesting that the second region with high slope index displays more variability in the extremes. However, comparisons of RMSE results using two regions against one single pooled region suggest that estimation of standardized quantiles is more accurate in the case of one single region for non extreme events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

References

  • Alila Y (1999) A hierarchical approach for the regionalization of precipitation annual maxima in Canada. J Geophys Res 104(D24-31):645–655

    Google Scholar 

  • Bargaoui ZK, Fortin V, Bobée B, Duckstein L (1998) Une approche floue pour la détermination de la région d'influence d'une station hydrométrique. Rev Sci Eau 11(2):255–282. doi:10.7202/705307ar

    Google Scholar 

  • Burn DH (1990) Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour Res 26(10):2257–2265. doi:10.1029/WR026i010p02257

    Article  Google Scholar 

  • Burn DH, Goel NK (2000) The formation of groups for regional flood frequency analysis. Hydrol Sci J 45(1):97–112. doi:10.1080/02626660009492308

    Article  Google Scholar 

  • Castellarin A, Burn DH, Brath A (2001) Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. J Hydrol 241:270–285. doi:10.1016/S0022-1694(00)00383-8

    Article  Google Scholar 

  • Castellarin A, Burn DH, Brath A (2008) Homogeneity testing: How homogeneous do heterogeneous cross-correlated regions seem? J Hydrol 360:67–76

    Article  Google Scholar 

  • Celeux G, Diday E, Govaert G, Lechevallier Y, Ralambondrainy H (1989) Classification automatique des données. Dunod, Paris

    Google Scholar 

  • Chow VT (1964) Handbook of applied hydrology. McGraw Hill, New York

    Google Scholar 

  • Coles S (2001) An introduction to statistical modelling of extreme values. Springer, London

    Google Scholar 

  • Dalrymple T (1960) Flood-frequency analyses. US Geological Survey Water-Supply Paper1543-A.

  • Ministère de l’Agriculture et des Ressources hydrauliques et de la Pèche, DGRE (2005) www.semide.tn/collect/annuaire

  • Durbin J, Knott M (1971) Components of cramér – von MisesStatistics. London school of economy and political. Science, UK

    Google Scholar 

  • Fill HD, Stedinger JR (1995) Homogeneity tests based upon gumbel distribution and a critical appraisal of Dalrymple’s test. J Hydrol 166(1–2):81–105

    Article  Google Scholar 

  • Gaume E, Gàal L, Viglione A, Szolgay J, Kohnovà S, Bloschel G (2010) Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. J Hydrol 394:101–117. doi:10.1016/j.jhydrol.2010.01.008

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1993) Some useful statistics in regional frequency analysis. Water Resour Res 29(2):271–281. doi:10.1029/92WR01980

    Article  Google Scholar 

  • Jambu M (1989) Exploration informatique et statistique des données. Dunod, Paris

    Google Scholar 

  • Jedidi K, Bargaoui Z, Benzarti Z (2009) Identification des zones pluviométriques homogènes en bassin versant basée sur l’information topographique. Rev Sci Eau 22(3):383–395. doi:10.7202/037777ar

    Google Scholar 

  • Kasner James H, Marcellin Michael W (1999) Universal trellis coded quantization. IEEE Trans Image Process 12:1667–1687

    Google Scholar 

  • Lu LH (1991) Statistical Methods for Regional Flood Frequency Investigations. Dissertation, Cornell University Ithaca NY

  • Lu L, Stedinger JR (1992) Sampling variance of normalized GEV/PWM quantile estimators and a regional homogeneity test. J Hydrol 138:223–245. doi:10.1016/0022-1694(92)90166-S

    Article  Google Scholar 

  • Ouarda T, Girard C, Cavadias GS, Bobée B (2001) Regional flood frequency estimation with canonical correlation analysis. J Hydrol 254(1–4):157–173

    Article  Google Scholar 

  • Pandey GR, Nguyen VTV (1999) A comparative study of regression based methods in regional flood frequency analysis. J Hydrol 225:92–101

    Article  Google Scholar 

  • Saporta G (1990) Probabilités. Analyses des données et statistiques. Technip, Paris

    Google Scholar 

  • Scholz FW, Stephens MA (1987) K-sample Anderson–darling tests. J Am Stat Assoc 82:918–924

    Google Scholar 

  • Singh VP (1992) Elementary hydrology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Tsakiris G, Nalbantis I, Cavadias G (2011) Regionalization of low flows based on canonical correlation analysis. Adv Water Resour 34(7):865–872. doi:10.1016/j.advwatres.2011.04.007

    Article  Google Scholar 

  • Viglione A, Laio F, Claps P (2007) A comparison of homogeneity tests for regional frequency analysis. Water Resour Res 43. doi:10.1029/2006WR005095

  • Wallis JR, Schaefer MG, Barker BL, Taylor GH (2007) Regional precipitation frequency analysis and spatial mapping for 24-hour and 2-hour durations for Washington state. Hydrol Earth Syst Sci 11(1):415–442. doi:10.5194/hess-11-415-2007

    Article  Google Scholar 

  • Yadav M, Wagener T, Gupta H (2007) Regionalization of constraints on expected watershed response behaviour for improved predictions in ungauged basins. Adv Water Resour 30:1756–1774

    Article  Google Scholar 

  • Zrinji Z, Burn DH (1994) Flood frequency analysis for ungauged sites using a region of influence approach. J Hydrol 153(1–21):3

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank the water resources division of the Tunisian Agricultural Ministry (W.R.D.) for the Database. We also sincerely, thank the anonymous reviewer and the editor for their constructive comments and suggestions which helped improving our initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Chérif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chérif, R., Bargaoui, Z. Regionalisation of Maximum Annual Runoff Using Hierarchical and Trellis Methods with Topographic Information. Water Resour Manage 27, 2947–2963 (2013). https://doi.org/10.1007/s11269-013-0325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-013-0325-0

Keywords

Navigation