Skip to main content

Advertisement

Log in

Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This study analyses the extreme high flows in Jinhua River basin under the impact of climate change for the near future 2011–2040. The objective of this study is to investigate the effect of using the bias corrected RCM outputs as input on the extreme flows by hydrological models. The future projections are obtained through the PRECIS model with resolution of 50 km × 50 km under climate scenario A1B. The daily precipitation from the PRECIS is bias corrected by distribution based scaling method. Afterwards, three hydrological models (GR4J, HBV and Xinanjiang) are calibrated and applied to simulate the daily discharge in the future. The hydrological models are driven with both bias corrected precipitation and raw precipitation from the PRECIS model for 2011–2040. It is found that after bias correction, the amount, frequency, intensity and variance of the precipitation from the regional climate model resemble the observation better. For the three hydrological models, the simulated annual maximum discharges are higher by using the raw precipitation from PRECIS than by bias corrected precipitation at any return period. Meanwhile, the uncertainties from different models cannot be neglected. The largest difference between three models is about 2,100 m3/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhtar M, Ahmad N, Booij MJ (2008) The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J Hydrol 355(1–4):148–163. doi:10.1016/j.jhydrol.2008.03.015

    Article  Google Scholar 

  • Bartholy J, Pongracz R, Torma C, Pieczka I, Kardos P, Hunyady A (2009) Analysis of regional climate change modelling experiments for the Carpathian basin. Int J Global Warm 1(1–3):238–252

    Article  Google Scholar 

  • Bergström S (1976) Development and application of a conceptual runoff model for Scandinavian catchments. SMHI Report RHO NO. 7, Norrköping, Sweden

  • Bergström S (1992) The HBV model - its structure and applications. SMHI Reports RH NO. 4, Norrköping, Sweden

  • Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36

    Article  Google Scholar 

  • Chen H, Xiang T, Zhou X, Xu CY (2012a) Impacts of climate change on the Qingjiang Watershed’s runoff change trend in China. Stoch Env Res Risk A 26(6):847–858. doi:10.1007/s00477-011-0524-2

    Article  Google Scholar 

  • Chen X, Yang T, Wang X, Xu CY, Yu Z (2012b) Uncertainty Intercomparison of Different Hydrological Models in Simulating Extreme Flows. Water Resour Manag: 1–17. doi:10.1007/s11269-012-0244-5

  • Chenoweth J, Hadjinicolaou P, Bruggeman A, Lelieveld J, Levin Z, Lange MA, Xoplaki E, Hadjikakou M (2011) Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: modeled 21st century changes and implications. WRR 47

  • Chu JT, Xia J, Xu CY, Singh VP (2010) Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor Appl Climatol 99(1–2):149–161. doi:10.1007/s00704-009-0129-6

    Article  Google Scholar 

  • Dakhlaoui H, Bargaoui Z, Bárdossy A (2012) Toward a more efficient calibration schema for HBV rainfall-runoff model. J Hydrol 444–445:161–179. doi:10.1016/j.jhydrol.2012.04.015

    Article  Google Scholar 

  • Deckers DLEH, Booij MJ, Rientjes THM, Krol MS (2010) Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall-runoff model. Water Resour Manag 24(14):3961–3985. doi:10.1007/s11269-010-9642-8

    Article  Google Scholar 

  • Edijatno, Nascimento ND, Yang XL, Makhlouf Z, Michel C (1999) GR3J: a daily watershed model with three free parameters. Hydrolog Sci J 44(2):263–277

    Article  Google Scholar 

  • Engeland K, Hisdal H (2009) A comparison of low flow estimates in ungauged catchments using regional regression and the HBV-model. Water Resour Manag 23(12):2567–2586. doi:10.1007/s11269-008-9397-7

    Article  Google Scholar 

  • Engeland K, Renard B, Steinsland I, Kolberg S (2010) Evaluation of statistical models for forecast errors from the HBV model. J Hydrol 384(1–2):142–155. doi:10.1016/j.jhydrol.2010.01.018

    Article  Google Scholar 

  • Fung F, Watts G, Lopez A, Orr HG, New M, Extence C (2012) Using Large Climate Ensembles to Plan for the Hydrological Impact of Climate Change in the Freshwater Environment. Water Resour Manag:1–22. doi:10.1007/s11269-012-0080-7

  • Ghosh S, Katkar S (2012) Modeling uncertainty resulting from multiple downscaling methods in assessing hydrological impacts of climate change. Water Resour Manag 26(12):3559–3579. doi:10.1007/s11269-012-0090-5471

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley centre coupled model without flux adjustments. ClDy 16(2–3):147–168

    Google Scholar 

  • Gosain AK, Rao S, Basuray D (2006) Climate change impact assessment on hydrology of Indian River basins. CSci 90(3):346–353

    Google Scholar 

  • Gosain AK, Rao S, Arora A (2011) Climate change impact assessment of water resources of India. CSci 101(3):356–371

    Google Scholar 

  • Haith DA, Shoemaker LL (1987) Generalized watershed loading functions for stream-flow nutrients. Water Resour Bull 23(3):471–478

    Article  Google Scholar 

  • Hamon WR (1961) Estimating Potential Evapotranspiration. J Hydraul Eng-asce 87 (HY3):107–120

    Google Scholar 

  • Hay LE, Clark MP, Wilby RL, Gutowski WJ, Leavesley GH, Pan Z, Arritt RW, Takle ES (2002) Use of regional climate model output for hydrologic simulations. J Hydrometeorol 3(5):571–590

    Article  Google Scholar 

  • Ho TMH, Phan VT, Le NQ, Nguyen QT (2011) Extreme climatic events over Vietnam from observational data and RegCM3 projections. Clim Res 49(2):87–100. doi:10.3354/Cr01021

    Article  Google Scholar 

  • Huang J, Zhang JC, Zhang ZX, Xu CY, Wang BL, Yao J (2011) Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch Env Res Risk A 25(6):781–792. doi:10.1007/s00477-010-0441-9

    Article  Google Scholar 

  • Ines AVM, Hansen JW (2006) Bias correction of daily GCM rainfall for crop simulation studies. Agr Forest Meteorol 138(1–4):44–53. doi:10.1016/j.agrformet.2006.03.009

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, Pachauri RK and Reisinger A, Geneva, Switzerland

  • Jiang T, Chen YQD, Xu CYY, Chen XH, Chen X, Singh VP (2007) Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang basin, South China. J Hydrol 336(3–4):316–333

    Article  Google Scholar 

  • Jiang S, Ren L, Hong Y, Yong B, Yang X, Yuan F, Ma M (2012) Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J Hydrol 452–453:213–225. doi:10.1016/j.jhydrol.2012.05.055

    Article  Google Scholar 

  • Kay AL, Davies HN, Bell VA, Jones RG (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Change 92(1–2):41–63. doi:10.1007/s10584-008-9471-4

    Article  Google Scholar 

  • Kotlarski S, Block A, BAhm U, Jacob D, Keuler K, Knoche R, Rechid D, Walter A (2005) Regional climate model simulations as input for hydrological applications: evaluation of uncertainties. AdG 5:119–125

    Google Scholar 

  • Kriauciuniene J, Jakimavicius D, Sarauskiene D, Kaliatka T (2012) Estimation of uncertainty sources in the projections of Lithuanian river runoff. Stoch Env Res Risk A:1–16. doi:10.1007/s00477-012-0608-7

  • Kundzewicz ZW, Stakhiv EZ (2010) Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrolog Sci J 55(7):1085–1089. doi:10.1080/02626667.2010.513211

    Article  Google Scholar 

  • Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332(3–4):487–496

    Article  Google Scholar 

  • Lenderink G, Buishand A, van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sc 11(3):1143–1159

    Article  Google Scholar 

  • Li H, Zhang Y, Chiew FHS, Xu S (2009a) Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J Hydrol 370(1–4):155–162

    Article  Google Scholar 

  • Li L, Hong Y, Wang JH, Adler RF, Policelli FS, Habib S, Irwn D, Korme T, Okello L (2009b) Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, lake Victoria, Africa. Nat Hazards 50(1):109–123

    Article  Google Scholar 

  • Li HB, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from intergovernmental panel on climate change AR4 models using equidistant quantile matching. JGRD 115(D10). doi:10.1029/2009JD012882

  • Li H, Zhang Y, Vaze J, Wang B (2012) Separating effects of vegetation change and climate variability using hydrological modelling and sensitivity-based approaches. J Hydrol 420–421:403–418. doi:10.1016/j.jhydrol.2011.12.0331029/2007wr006665

    Article  Google Scholar 

  • Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201(1–4):272–288

    Article  Google Scholar 

  • Madigan D, Raftery AE, Volinsky C, Hoeting J Bayesian model averaging. In, 1996. pp 77–83

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29(15):2241–2255

    Article  Google Scholar 

  • Mileham L, Taylor RG, Todd M, Tindimugaya C, Thompson J (2009) The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrolog Sci J 54(4):727–738

    Article  Google Scholar 

  • Najafi MR, Moradkhani H, Jung IW (2011) Assessing the uncertainties of hydrologic model selection in climate change impact studies. HyPr 25(18):2814–2826. doi:10.1002/Hyp.8043

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I - a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Oudin L, Andreassian V, Perrin C, Anctil F (2004) Locating the sources of low-pass behavior within rainfall-runoff models. WRR 40(11). doi:10.1029/2004wr003291

  • Parrish MA, Moradkhani H, DeChant CM (2012) Toward reduction of model uncertainty: integration of Bayesian model averaging and data assimilation. WRR 48(3):W03519. doi:10.1029/2011WR011116

    Article  Google Scholar 

  • Payne JT, Wood AW, Hamlet AF, Palmer RN, Lettenmaier DP (2004) Mitigating the effects of climate change on the water resources of the Columbia river basin. Clim Change 62(1–3):233–256

    Article  Google Scholar 

  • Peng DZ, Xu ZX (2010) Simulating the impact of climate change on streamflow in the Tarim river basin by using a modified semi-distributed monthly water balance model. HyPr 24(2):209–216

    Google Scholar 

  • Perrin C, Michel C, Andreassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279(1–4):275–289

    Article  Google Scholar 

  • Refsgaard JC, van der Sluijs JP, Brown J, van der Keur P (2006) A framework for dealing with uncertainty due to model structure error. Adv Water Resour 29(11):1586–1597. doi:10.1016/j.advwatres.2005.11.013

    Article  Google Scholar 

  • Rojas R, Feyen L, Dassargues A (2008) Conceptual model uncertainty in groundwater modeling: combining generalized likelihood uncertainty estimation and Bayesian model averaging. WRR 44(12):W12418

    Article  Google Scholar 

  • Senatore A, Mendicino G, Smiatek G, Kunstmann H (2011) Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. J Hydrol 399(1–2):70–92. doi:10.1016/j.jhydrol.2010.12.035

    Article  Google Scholar 

  • Shi P, Chen C, Srinivasan R, Zhang X, Cai T, Fang X, Qu S, Chen X, Li Q (2011) Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resour Manag 25(10):2595–2612. doi:10.1007/s11269-011-9828-810.1002/hyp.8058

    Article  Google Scholar 

  • Ueyama H, Adachi S, Kimura F (2010) Compilation method for 1 km grid data of monthly mean air temperature for quantitative assessments of climate change impacts. Theor Appl Climatol 101(3–4):421–431

    Article  Google Scholar 

  • Wang YQ, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation (vol 32, art no L09707, 2005). GeoRL 32(17). doi:10.1029/2005gl023769

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the river Thames, UK. WRR 42(2)

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geog 21(4):530–548

    Article  Google Scholar 

  • Wilby RL, Hassan H, Hanaki K (1998) Statistical downscaling of hydrometeorological variables using general circulation model output. J Hydrol 205(1–2):1–19

    Article  Google Scholar 

  • Wilby RL, Hay LE, Leavesley GH (1999) A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan river basin, Colorado. J Hydrol 225(1–2):67–91

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM - a decision support tool for the assessment of regional climate change impacts. Environ Modell Softw 17(2):147–159

    Article  Google Scholar 

  • Willems P, Vrac M (2011) Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. J Hydrol 402(3–4):193–205. doi:10.1016/j.jhydrol.2011.02.030

    Article  Google Scholar 

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the eastern United States. JGRD 107(D20). doi:10.1029/2001jd000659

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62(1–3):189–216

    Article  Google Scholar 

  • Wu W, Clark JS, Vose JM (2010) Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling. J Hydrol 394(3–4):436–446. doi:10.1016/j.jhydrol.2010.09.017

    Article  Google Scholar 

  • Xu YL, Huang XY, Zhang Y, Lin WT, Lin ED (2006a) Statistical analyses of climate change scenarios over China in the 21st century. Adv Clim Chang Res 2(1):50–53

    Google Scholar 

  • Xu YL, Zhang Y, Lin ED, Lin WT, Dong WJ, Jones R, Hassell D, Wilson S (2006b) Analyses on the climate change responses over China under SRES B2 scenario using PRECIS. Chin Sci Bull 51(18):2260–2267

    Article  Google Scholar 

  • Xu YP, Zhang X, Tian Y (2012) Impact of climate change on 24-h design rainfall depth estimation in Qiantang river basin, East China. Hydrol Processes 26:4067–4077

    Article  Google Scholar 

  • Yuan F, Xie ZH, Liu Q, Xia J (2005) Simulating hydrologic changes with climate change scenarios in the Haihe river basin. Pedosphere 15(5):595–600

    Google Scholar 

  • Zhang Y, Xu Y, Dong W, Cao L, Sparrow M (2006) A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. GeoRL 33(24):L24702

    Google Scholar 

  • Zhang Q, Singh VP, Sun P, Chen X, Zhang Z, Li J (2011) Precipitation and streamflow changes in China: changing patterns, causes and implications. J Hydrol 410:204–216

    Article  Google Scholar 

  • Zhang A, Zhang C, Fu G, Wang B, Bao Z, Zheng H (2012a) Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour Manag 26(8):2199–2217. doi:10.1007/s11269-012-0010-8

    Article  Google Scholar 

  • Zhang D, Zhang L, Guan Y, Chen X (2012b) Sensitivity analysis of Xinanjiang rainfall-runoff model parameters: A case study in Lianghui, Zhejiang province, China. Hydrol Res 43(1–2):123–134. doi:10.2166/nh.2011.131

    Article  Google Scholar 

  • Zhao RJ (1992) The Xinanjiang model applied in China. J Hydrol 135(1–4):371–381

    Google Scholar 

  • Zhao G, Hörmann G, Fohrer N, Zhang Z, Zhai J (2010) Streamflow trends and climate variability impacts in Poyang Lake basin, China. Water Resour Manag 24(4):689–706. doi:10.1007/s11269-009-9465-7

    Article  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the International Science and Technology Cooperation Program of China (Project No. 2010DFA24320) and the Nature Science Foundation of China (Project No. 50809058). Other supports from Met Office Hadley Centre, UK, Bureau of Hydrology, Zhejiang Province, and Nanjing Hydraulic Research Institute are highly acknowledged. Finally, many thanks are given to two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Ping Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Xu, YP. & Zhang, XJ. Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models. Water Resour Manage 27, 2871–2888 (2013). https://doi.org/10.1007/s11269-013-0321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-013-0321-4

Keywords

Navigation