Skip to main content
Log in

High Order Multi-User MIMO Subspace Detection

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

An efficient high order multi-user multiple-input multiple-output (MU-MIMO) subspace detector is proposed. The detector employs joint modulation classification (MC) and subspace detection (SD), by which the modulation type of the interferer is estimated, while multiple decoupled streams are individually detected. The algorithmic contributions are on two levels. First, the preprocessing channel matrix decomposition overhead is reduced, using special layer ordering followed by permutation-robust QR Decomposition and elementary matrix operations. Second, a hierarchical MC scheme is proposed, comprising feature-based and near-optimal likelihood-based classifiers, as well as a classifier that always assumes the interfering modulation type to be a fixed high order quadrature amplitude modulation. An efficient hardware architecture that realizes the proposed algorithms is presented. Simulations demonstrate that depending on the channel condition, one of the proposed schemes can achieve near interference-aware performance with a minimum complexity overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Duplicy, J., Biljana, B., Balraj, R., Ghaffar, R., Horváth, P., Kaltenberger, F., Knopp, R., Kovács, I., Nguyen, H., & Tandur, D. (2011). MU-MIMO in LTE systems. EURASIP Journal on Wireless Communications and Networking, 2011(1), 496–763.

    Google Scholar 

  2. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications, Cambridge University Press.

  3. Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation. 3GPP Std. TS 36.211 http://www.3gpp.org.

  4. Physical channels and mapping of transport channels onto physical channels. 3GPP Std. TS 25.211 http://www.3gpp.org.

  5. IEEE standard for air interface for broadband wireless access systems. IEEE Std. 802.16 (2012). http://standards.ieee.org/getieee802/802.16.html.

  6. IEEE standard for local and metropolitan area networks – part 11: Wireless LAN medium access control (MAC) and physical layer (PHY). IEEE Std. 802.11 (2012). http://standards.ieee.org/getieee802/802.11.html.

  7. Hassibi, B., & Vikalo, H. (2005). On the sphere-decoding algorithm I. expected complexity. IEEE Transactions on Signal Processing, 53(8), 2806–2818.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mansour, M.M., Alex, S.P., & Jalloul, L.M. (2014). Reduced complexity soft-output MIMO sphere detectors—part I: Algorithmic optimizations. IEEE Transactions on Signal Processing, 62(21), 5505–5520.

    Article  MathSciNet  Google Scholar 

  9. Mansour, M.M., Alex, S.P., & Jalloul, L.M. (2014). Reduced complexity soft-output MIMO sphere detectors—part II: Architectural optimizations. IEEE Transactions on Signal Processing, 62(21), 5521–5535.

    Article  MathSciNet  Google Scholar 

  10. Vikalo, H., & Hassibi, B. (2005). On the sphere-decoding algorithm II. generalizations, second-order statistics, and applications to communications. IEEE Transactions on Signal Processing, 53(8), 2819–2834.

    Article  MathSciNet  MATH  Google Scholar 

  11. Viterbo, E., & Boutros, J. (1999). A universal lattice code decoder for fading channels. IEEE Transactions on Information Theory, 45(5), 1639–1642.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ariyavisitakul, S.L., Zheng, J., Ojard, E., & Kim, J. (2008). Subspace beamforming for near-capacity MIMO performance. IEEE Transactions on Signal Processing, 56(11), 5729–5733.

    Article  MathSciNet  Google Scholar 

  13. Mansour, M.M. (2015). A near-ML MIMO subspace detection algorithm. IEEE Signal Processing Letters, 22 (4), 408–412.

    Article  Google Scholar 

  14. Mansour, M.M. (2015). A low-complexity MIMO subspace detection algorithm. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–11.

    Article  Google Scholar 

  15. Siti, M., & Fitz, M.P. (2006). A novel soft-output layered orthogonal lattice detector for multiple antenna communications, Proceedings of the IEEE int. Conf. Commun. (ICC), (Vol. 4 pp. 1686–1691).

  16. Jungwon, L., Toumpakaris, D., & Wei, Y. (2011). Interference mitigation via joint detection. IEEE Journal on Selected Areas in Communications, 29(6), 1172–1184.

    Article  Google Scholar 

  17. Bai, Z., Badic, B., Iwelski, S., Scholand, T., Balraj, R., Bruck, G., & Jung, P. (2011). On the equivalence of MMSE and IRC receiver in MU-MIMO systems. IEEE Communications Letters, 15(12), 1288–1290.

    Article  Google Scholar 

  18. Ghaffar, R., & Knopp, R. (2011). Interference sensitivity for multiuser MIMO in LTE, 2011 IEEE 12th international workshop on Signal processing advances in wireless communications (SPAWC) (pp. 506–510).

    Chapter  Google Scholar 

  19. Ghaffar, R., & Knopp, R. (2011). Interference-aware receiver structure for multi-user MIMO and LTE. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–17.

    Article  Google Scholar 

  20. Gomaa, A., Jalloul, L.M., Gomadam, K.S., Tujkovic, D., & Mansour, M.M. (2015). Multi-user MIMO receivers with partial state information. arXiv:1502.00212.

  21. Bae, J.H., Kim, S., Lee, J., & Kang, I. (2012). Advanced downlink MU-MIMO receiver for 3GPP LTE-a, Proceeding of the IEEE int. Conf. Commun. (ICC) (pp. 7004–7008).

    Google Scholar 

  22. Dobre, O.A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: classical approaches and new trends. Communications, IET, 1(2), 137– 156.

    Article  Google Scholar 

  23. Wei, W., & Mendel, J.M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE transactions on Communications, 48(2), 189–193.

    Article  Google Scholar 

  24. Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification, Proceedings of the IEEE MILCOM, (Vol. 2 pp. 670–674).

  25. Hameed, F., Dobre, O.A., & Popescu, D.C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892.

    Article  Google Scholar 

  26. Choqueuse, V., Azou, S., Yao, K., Collin, L., & Burel, G. (2009). Blind modulation recognition for MIMO systems. MTA Review, 19(2), 183–196.

    Google Scholar 

  27. Shim, B., & Kang, I. (2009). Joint modulation classification and detection using sphere decoding. IEEE Signal Processing Letters, 16(9), 778–781.

    Article  Google Scholar 

  28. Ramezani-Kebrya, A., Kim, I.M., Kim, D.I., Chan, F., & Inkol, R. (2013). Likelihood-based modulation classification for multiple-antenna receiver. IEEE Transactions on Communications, 61(9), 3816–3829.

    Article  Google Scholar 

  29. Sarieddeen, H., Mansour, M.M., Jalloul, L.M.A., & Chehab, A. (2015). Likelihood-based modulation classification for MU-MIMO systems, Proceedings of the IEEE global conf. on signal and inform. Process. (GlobalSIP) (pp. 873–877).

    Google Scholar 

  30. Dobre, O.A., Abdi, A., Bar-Ness, Y., & Su, W. (2010). Cyclostationarity-based modulation classification of linear digital modulations in flat fading channels. Wireless Personal Communications, 54(4), 699–717.

    Article  Google Scholar 

  31. Muhlhaus, M.S., Oner, M., Dobre, O.A., Jkel, H.U., & Jondral, F.K. (2012). Automatic modulation classification for mimo systems using fourth-order cumulants, Proceedings of the IEEE vehic. Technol. Conf. (VTC) (pp. 1–5).

    Google Scholar 

  32. Muhlhaus, M.S., Oner, M., Dobre, O.A., Jakel, H.U., & Jondral, F.K. (2013). A novel algorithm for MIMO signal classification using higher-order cumulants, 2013 IEEE Radio and wireless symposium (RWS) (pp. 7–9).

    Google Scholar 

  33. Studer, C., Fateh, S., & Seethaler, D. (2011). ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation. IEEE Journal of Solid-State Circuits, 46(7), 1754–1765.

    Article  Google Scholar 

  34. Mansour, M.M., & Jalloul, L.M. (2015). Optimized configurable architectures for scalable soft-input soft-output MIMO detectors with 256-QAM. IEEE Transactions on Signal Processing, 63(18), 4969–4984.

    Article  MathSciNet  Google Scholar 

  35. Gomaa, A., & Jalloul, L.M.A. (2014). Efficient soft-input soft-output detection of dual-layer MIMO systems. IEEE Wireless Communications Letters, 3(5), 541–544.

    Article  Google Scholar 

  36. Edelman, A. (1988). Eigenvalues and condition numbers of random matrices. SIAM Journal on Matrix Analysis and Applications, 9(4), 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  37. Choi, J. (2006). Nulling and cancellation detector for MIMO and its application to multistage receiver for coded signals: performance and optimization, (Vol. 5.

  38. Golub, G.H., & Van loan, C.F. (1996). Matrix Computations, 3rd edn. Baltimore: Johns Hopkins University.

  39. William, G., & Chad, M.S. (1994). The cumulant theory of cyclostationary time-series, part I. IEEE Transactions on Signal Processing, 42(12), 3409–3429.

    Article  Google Scholar 

  40. Sarieddeen, H., Mansour, M.M., & Chehab, A. (2016). Modulation classification via subspace detection in mimo systems, IEEE Communications Letters.

  41. Sarieddeen, H., Mansour, M.M., & Chehab, A. (2016). Efficient near-optimal 8x8 mimo detector, Proceedings of the IEEE wireless commun. and netw. Conf. (WCNC) (pp. 1–6).

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the National Council for Scientific Research (CNRS) in Lebanon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Sarieddeen.

Additional information

Early results of this paper were presented at the IEEE Wireless Communication and Networking Conference (WCNC 2016), Doha, Qatar, April 2016. [41].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarieddeen, H., Mansour, M.M., Jalloul, L. et al. High Order Multi-User MIMO Subspace Detection. J Sign Process Syst 90, 305–321 (2018). https://doi.org/10.1007/s11265-017-1231-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-017-1231-0

Keywords

Navigation