Skip to main content
Log in

Spectral Generalized Multi-dimensional Scaling

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Multidimensional scaling (MDS) is a family of methods that embed a given set of points into a simple, usually flat, domain. The points are assumed to be sampled from some metric space, and the mapping attempts to preserve the distances between each pair of points in the set. Distances in the target space can be computed analytically in this setting. Generalized MDS is an extension that allows mapping one metric space into another, that is, MDS into target spaces in which distances are evaluated numerically rather than analytically. Here, we propose an efficient approach for computing such mappings between surfaces based on their natural spectral decomposition, where the surfaces are treated as sampled metric-spaces. The resulting spectral-GMDS procedure enables efficient embedding by incorporating smoothness of the metric structure into the problem, thereby substantially reducing the complexity involved in its solution while practically overcoming its non-convex nature. The method is compared to existing techniques that compute dense correspondence between shapes. Numerical experiments of the proposed method demonstrate its efficiency and accuracy compared to state-of-the-art approaches especially when isometry invariance is a dominant property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aflalo, Y., & Kimmel, R. (2013). Spectral multidimensional scaling. Proceedings of the National Academy of Sciences, 110(45), 18,052–18,057.

    Article  MathSciNet  MATH  Google Scholar 

  • Aflalo, Y., Kimmel, R., & Raviv, D. (2013). Scale invariant geometry for nonrigid shapes. SIAM Journal on Imaging Sciences, 6(3), 1579–1597.

    Article  MathSciNet  MATH  Google Scholar 

  • Aflalo, Y., Brezis, H., & Kimmel, R. (2015a). On the optimality of shape and data representation in the spectral domain. SIAM Journal on Imaging Sciences, 8(2), 1141–1160.

    Article  MathSciNet  MATH  Google Scholar 

  • Aflalo, Y., Bronstein, A., & Kimmel, R. (2015b). On convex relaxation of graph isomorphism. Proceedings of the National Academy of Sciences, 112(10), 2942–2947. doi:10.1073/pnas.1401651112.

    Article  MathSciNet  Google Scholar 

  • Anguelov, D., Srinivasan, P., Pang, H. C., Koller, D., Thrun, S., & Davis, J. (2004). The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. Advances in Neural Information Processing Systems, 17, 33–40.

    Google Scholar 

  • Aubry, M., Schlickewei, U., & Cremers, D. (2011). The wave kernel signature: A quantum mechanical approach to shape analysis. In: 2011 IEEE international conference on computer vision workshops (ICCV workshops), IEEE, pp 1626–1633.

  • Baloch, S., Krim, H., Kogan, I., & Zenkov, D. (2005). Rotation invariant topology coding of 2d and 3d objects using morse theory. In IEEE international conference on image processing, 2005. ICIP 2005 (Vol. 3, pp. III-796–III-799).

  • Ben-Tal, A., & Zibulevsky, M. (1997). Penalty/barrier multiplier methods for convex programming problems. SIAM Journal on Optimization, 7(2), 347–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Bérard, P., Besson, G., & Gallot, S. (1994). Embedding riemannian manifolds by their heat kernel. Geometric and Functional Analysis, 4(4), 373–398.

    Article  MathSciNet  MATH  Google Scholar 

  • Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-d shapes. In Robotics-DL tentative. International Society for Optics and Photonics, pp. 586–606.

  • Borg, I., & Groenen, P. (1997). Modern multidimensional scaling: Theory and applications. New York: Springer.

    Book  MATH  Google Scholar 

  • Bronstein, A., Bronstein, M., & Kimmel, R. (2008). Numerical geometry of non-rigid shapes. New York: Springer.

    MATH  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006). Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences of the USA, 103(5), 1168–1172.

    Article  MathSciNet  MATH  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., Kimmel, R., Mahmoudi, M., & Sapiro, G. (2010). A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision, 89(2–3), 266–286. doi:10.1007/s11263-009-0301-6.

    Article  Google Scholar 

  • Bronstein, M., & Bronstein, A. M. (2011). Shape recognition with spectral distances. IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), 33(5), 1065–1071.

    Article  Google Scholar 

  • Burago, D., Burago, Y., & Ivanov, S. (2001). A course in metric geometry. Providence: American Mathematical Society.

    Book  MATH  Google Scholar 

  • Chen, Y., & Medioni, G. (1991). Object modeling by registration of multiple range images. In Proceedings. IEEE international conference on robotics and automation, pp. 2724–2729.

  • Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Analysis, 21(1), 5–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubrovina, A., & Kimmel, R. (2010). Matching shapes by eigendecomposition of the laplace\(\_\)belrami operator. In Proceedings of the symposium on 3D data processing visualization and transmission (3DPVT).

  • Gȩbal, K., Bærentzen, J. A., Aanæs, H., & Larsen, R. (2009). Shape analysis using the auto diffusion function. Computer Graphics Forum, Wiley Online Library, 28, 1405–1413.

    Article  Google Scholar 

  • Gonzalez, T. F. (1985). Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38, 293–306.

    Article  MathSciNet  MATH  Google Scholar 

  • Gromov, M. (1981). Structures metriques pour les varietes riemanniennes. Textes Mathematiques, no. 1.

  • Gu, X., Wang, Y., Chan, T. F., Thompson, P. M., & Yau, S. T. (2004). Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging, 23(8), 949–958.

    Article  Google Scholar 

  • Hochbaum, D., & Shmoys, D. (1985). A best possible heuristic for the \(k\)-center problem. Mathematics of Operations Research, 10, 180–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Jin, M., Wang, Y., Yau, S. T., & Gu, X. (2004). Optimal global conformal surface parameterization. IEEE Visualization, pp. 267–274.

  • Kim, V. G., Lipman, Y., & Funkhouser, T. (2011). Blended intrinsic maps. In ACM Transactions on Graphics (TOG), ACM (Vol. 30, p. 79).

  • Lévy, B. (2006). Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In IEEE International Conference on Shape Modeling and Applications, 2006. SMI 2006, pp. 13–13.

  • Lipman, Y., & Daubechies, I. (2011). Surface comparison with mass transportation. Advances in Mathematics, 227(3)

  • Lipman, Y., & Funkhouser, T. (2009). Möbius voting for surface correspondence. ACM Transactions on Graphics (Proc SIGGRAPH), 28(3), 72.

    Article  Google Scholar 

  • Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., & Boyer, E. (2008). Articulated shape matching using laplacian eigenfunctions and unsupervised point registration. In IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2008. pp. 1–8.

  • Memoli, F. (2007). On the use of Gromov-Hausdorff distances for shape comparison. In M. Botsch, R. Pajarola, B. Chen, & M. Zwicker (Eds.), Symposium on point based graphics (pp. 81–90). Prague: Czech Republic, Eurographics Association.

    Google Scholar 

  • Memoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5(3), 313–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., & Guibas, L. (2012). Functional maps: A flexible representation of maps between shapes. ACM Transaction on Graph, 31(4), 30:1–30:11.

    Google Scholar 

  • Pinkall, U., & Polthier, K. (1993). Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1), 15–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Pokrass, J., Bronstein, A. M., Bronstein, M. M., Sprechmann, P., & Sapiro, G. (2013). Sparse modeling of intrinsic correspondences. Computer Graphics Forum (EUROGRAPHICS), 32, 459–468.

    Article  Google Scholar 

  • Raviv, D., Dubrovina, A., & Kimmel, R. (2012). Hierarchical matching of non-rigid shapes. In Scale space and variational methods in computer vision, Springer, Berlin, pp. 604–615.

  • Rustamov, R., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., & Guibas, L. (2013). Map-based exploration of intrinsic shape differences and variability. In SIGGRAPH, ACM.

  • Sahillioğlu, Y., & Yemez, Y. (2011). Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Computer Graphics Forum, Wiley Online Library, 30, 1461–1470.

    Article  Google Scholar 

  • Schwartz, E. L., Shaw, A., & Wolfson, E. (1989). A numerical solution to the generalized mapmaker’s problem: Flattening nonconvex polyhedral surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(9), 1005–1008.

    Article  Google Scholar 

  • Shtern, A., & Kimmel, R. (2014). Iterative closest spectral kernel maps. In 2nd International Conference on 3D Vision (3DV) (Vol. 1, pp. 499–505).

  • Shtern, A., & Kimmel, R. (2015). Spectral gradient fields embedding for nonrigid shape matching. Computer Vision and Image Understanding, 140, 21–29.

    Article  Google Scholar 

  • Sun, J., Ovsjanikov, M., & Guibas, L. (2009). A concise and provably informative multi-scale signature based on heat diffusion. In Proceedings of the symposium on geometry processing, Eurographics Association, Aire-la-Ville, Switzerland, SGP’09, pp. 1383–1392.

  • Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009). Surface feature detection and description with applications to mesh matching. In IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009, pp. 373–380.

  • Zeng, W., Lui, L. M., Luo, F., Chan, T. F. C., Yau, S. T., & Gu, D. X. (2012). Computing quasiconformal maps using an auxiliary metric and discrete curvature flow. Numerische Mathematik, 121(4), 671–703.

  • Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., & Paragios, N. (2010). Dense non-rigid surface registration using high-order graph matching. In IEEE conference on computer vision and pattern recognition (CVPR), pp. 382–389.

Download references

Acknowledgments

The authors would like to thank Alon Shtern and Matan Sela for stimulating discussions throughout this research. This work has been supported by Grant agreement No. 267414 of the European Communitys FP7-ERC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonathan Aflalo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. C. Vemuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aflalo, Y., Dubrovina, A. & Kimmel, R. Spectral Generalized Multi-dimensional Scaling. Int J Comput Vis 118, 380–392 (2016). https://doi.org/10.1007/s11263-016-0883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-016-0883-8

Keywords

Navigation