Skip to main content
Log in

Divergence-Free Wavelets and High Order Regularization

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Expanding on a wavelet basis the solution of an inverse problem provides several advantages. First of all, wavelet bases yield a natural and efficient multiresolution analysis which allows defining clear optimization strategies on nested subspaces of the solution space. Besides, the continuous representation of the solution with wavelets enables analytical calculation of regularization integrals over the spatial domain. By choosing differentiable wavelets, accurate high-order derivative regularizers can be efficiently designed via the basis’s mass and stiffness matrices. More importantly, differential constraints on vector solutions, such as the divergence-free constraint in physics, can be nicely handled with biorthogonal wavelet bases. This paper illustrates these advantages in the particular case of fluid flow motion estimation. Numerical results on synthetic and real images of incompressible turbulence show that divergence-free wavelets and high-order regularizers are particularly relevant in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In the following, we will restrict ourselves to the study of DFD equation, but the approach remains valid for any other integrated data model. Indeed, for other image modalities, many other brightness evolution models have been proposed in the literature to link the image intensity function to the sought velocity field (Liu and Shen 2008).

  2. In practice we use a quasi-newton method combined to the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method Nocedal and Wright (1999) to approximate the Hessian matrix. Thus, we can optimize the parameter \(\alpha \) which is the acceptable stepsize in the direction found in the first step according to a Wolfe condition.

  3. For \(d=2\), we define \(\mathbf{curl}(\chi ):=(\partial _y\chi ,-\partial _x\chi )\).

  4. \(H^1(\mathbb{R }^d)\) denotes the classical Sobolev space:

    $$\begin{aligned} \Vert f\Vert ^2_{H^1(\mathbb{R }^d)}=\Vert f\Vert ^2_{L^2(\mathbb{R }^d)}+\Vert \nabla f\Vert ^2_{L^2(\mathbb{R }^d)} \end{aligned}$$

References

  • Bergen, J., Burt, P., Hingorani, R., & Peleg, S. (1992). A 3-frame algorithm for estimating two-component image motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), 886–895.

    Article  Google Scholar 

  • Beylkin, G. (1992). On the representation of operator in bases of compactly supported wavelets. SIAM Journal on Numerical Analysis, 6(6), 1716–1740.

    Article  MathSciNet  Google Scholar 

  • Cohen, A., Daubechies, I., & Feauveau, J. C. (1992). Bi-orthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 45, 485–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Dérian, P., Héas, P., Herzet, C., Mémin, E. (2011). Wavelet-based fluid motion estimation. In: 3rd international conference on scale-space and variational methods in computer vision (SSVM2011). IEEE LNCS, Ein-Gedi.

  • Deriaz, E., & Perrier, V. (2006). Divergence-free and curl-free wavelets in 2D and 3D, application to turbulence. Journal of Turbulence, 7, 1–37.

    Article  MathSciNet  Google Scholar 

  • Girault, V., & Raviart, P. (1986). Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer series in computational mathematics. Berlin: Springer.

    Book  Google Scholar 

  • Heas, P., Memin, E., Heitz, D., & Mininni, P. (2012). Power laws and inverse motion modeling: application to turbulence measurements from satellite images. Tellus A, 64, 10962. doi:10.3402/tellusa.v64i0.10962.

    Article  Google Scholar 

  • Heitz, D., Carlier, J., Arroyo, G. (2007). Final report on the evaluation of the tasks of the workpackage 2, FLUID project deliverable 5.4. Technical report, INRIA-Cemagref.

  • Heitz, D., Mémin, E., & Schnörr, C. (2010). Variational fluid flow measurements from image sequences: Synopsis and perspectives. Experiments in fluids, 48(3), 369–393.

    Article  Google Scholar 

  • Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.

    Google Scholar 

  • Jullien, M., Castiglione, P., & Tabeling, P. (2000). Experimental observation of batchelor dispersion of passive tracers. Physical Review Letters, 85(17), 3636–3639.

    Google Scholar 

  • Kohlberger, T., Mémin, E., & Schnörr, C. (2003). Dense motion estimation using the Helmholtz decomposition. Scale Space Methods in Computer Vision, 2695, 432–448.

    Article  Google Scholar 

  • Kahane, J.-P., & Lemarié-Rieusset, P.-G. (1995). Fourier series and wavelets. Luxembourg: Gordon and Breach.

    Google Scholar 

  • Lemarié-Rieusset, P.-G. (1992). Analyses multirésolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle. Revista Matematica Iberoamericana, 8, 221–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, T., & Shen, L. (2008). Fluid flow and optical flow. Journal of Fluid Mechanics, 614, 253–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Mallat, S. (2008). A wavelet tour of signal processing: The sparse way. Orlando: Academic Press.

    Google Scholar 

  • Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer series in operations research. New York: Springer.

    Google Scholar 

  • Papadakis, N., Corpetti, T., & Mémin., E,. (2007). Dynamically consistent optical flow estimation. Rio de Janeiro, Brasil: IEEE International Conference on Computer Vision.

  • Ruhnau, P., & Schnörr, C. (2007). Optical stokes flow estimation: An imaging-based control approach. Experiments in Fluids, 42, 61–78.

    Article  Google Scholar 

  • Sass-Hansen, M., Larsen, R., & Christensen, N.-V. (2009). Curl-gradient image warping-introducing deformation potentials for medical image registration using Helmholtz decomposition. VISSAPP, 1, 79–185.

    Google Scholar 

  • Simard, P. Y., & Mailloux, G. E. (1998). A projection operator for the restoration of divergence-free vector fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 248–256.

    Article  Google Scholar 

  • Steinbruecker, F., Pock, T., Cremers, D. (2009). Large displacement optical flow computation without warping. In: IEEE International Conference on Computer Vision (ICCV). Kyoto.

  • Suter, D. (1994). Motion estimation and vector splines. In: Proceeding conference computer vision pattern recognition (pp. 939–942). Seattle.

  • Terzopoulos, D. (1986). Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 413–424.

    Article  Google Scholar 

  • Wu, Y., Kanade, T., Li, C., & Cohn, J. (2000). Image registration using wavelet-based motion model. International Journal of Computer Vision, 38(2), 129–152.

    Article  MATH  Google Scholar 

  • Yuan, J., Schnörr, C., & Mémin, E. (2007). Discrete orthogonal decomposition and variational fluid flow estimation. Journal of Mathematical Imaging and Vision, 28, 67–80.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kadri-Harouna.

Appendices

Appendix

Fast Divergence-Free Wavelet Transform

To implement numerically the divergence-free wavelet based method of Sect. 5.2, it is necessary to have at hand the fast divergence-free wavelet transform algorithm. For this practical reasons, the divergence-free wavelet bases have to be compactly supported. Such wavelet bases exist and can be fortunately easily constructed. They have been introduced first by Lemarié-Rieusset (1992). The objective here is to detail the anisotropic construction of divergence-free wavelet basis introduce in Sect. 5.1 in order to construct the associated fast wavelet transform algorithm.

Before further detailing this construction, we first give some technical precisions. Since the curl operator introduces derivation operators, it is important to answer to the following questions: what is the derivative of a scaling function? What is the derivative of a wavelet? Does differentiation preserve the \(L^2(\mathbb{R })\) orthogonality property of a wavelet basis?

Using integration by part, to answer the last question we have:

$$\begin{aligned} \int _{\mathbb{R }}\varphi _k^{\prime }(x)\varphi _{\ell }^{\prime }(x)dx =-\int _{\mathbb{R }}\varphi _k(x)\varphi _{\ell }^{\prime \prime }(x)dx. \end{aligned}$$

Thus, if \(\{\varphi _{j,k}:\,k\in \mathbb{Z }\}\) is an orthogonal basis, this property is preserved by differentiation if and only if \(\varphi =-\varphi ^{\prime \prime }\): which is for instance true for sinus or cosinus basis.

The answers to the first two questions are supplied by Kahane and Lemarié-Rieusset (1995). Precisely, let \((\varphi ^1,\tilde{\varphi }^1)\) be a pair of biorthogonal scaling functions associated to biorthogonal wavelets \((\psi ^1,\tilde{\psi }^1)\), with \(\varphi ^1\in \mathcal{C }^{1+\epsilon }(\mathbb{R })\), \(\epsilon >0\). Then there exists another biorthogonal scaling functions \((\varphi ^0, \tilde{\varphi }^0)\) and biorthogonal wavelets \((\psi ^0,\tilde{\psi }^0)\), satisfying Kahane and Lemarié-Rieusset (1995):

$$\begin{aligned} \frac{d}{dx}\varphi ^1(x)=\varphi ^0(x)\,-\,\varphi ^0(x-1), \end{aligned}$$
(51)

and

$$\begin{aligned} \frac{d}{dx}\tilde{\varphi }^0(x)=\tilde{\varphi }^1(x+1) \,-\,\tilde{\varphi }^1(x). \end{aligned}$$
(52)

The associated wavelets verify ( Kahane and Lemarié-Rieusset 1995 ):

$$\begin{aligned} \psi ^1(x)=4\int \limits _{-\infty }^x\psi ^0\quad \text{ and}\quad \tilde{\psi }^0(x)=-4\int \limits _{-\infty }^x\tilde{\psi }^1. \end{aligned}$$
(53)

Hence, according to (51), (52) and (53), the derivative of a scaling function is expressed as a finite difference on neighborhoods of another scaling function and the derivative of a wavelet is another wavelet. Figure 15 shows the plot of an example of these scaling functions and wavelets linked by differentiation and integration.

Fig. 15
figure 15

Example of biorthogonal generators and primal derivatives: case of B-Spline generators \((\varphi ^1,\tilde{\varphi }^1)\) with 3 vanishing moments

Let \((V^1_j)_{j\in \mathbb{Z }}\) and \((V^0_j)_{j\in \mathbb{Z }}\) be one-dimensional multiresolution analyses of \(L^2(\mathbb{R })\) provided by \(\varphi ^1\) and \(\varphi ^0\) respectively, with \(\varphi ^1\) and \(\varphi ^0\) defined by (51). Since we use tensor product construction in higher dimension, each sequence of space, namely:

$$\begin{aligned} V^1_j\otimes V^0_j=\text{ span}\left\{ \varphi ^1_{j,k_1}(x)\varphi ^0_{j,k_2} (y),\,k_1,k_2\in \mathbb{Z }\right\} ,\quad j\in \mathbb{Z }, \end{aligned}$$

or

$$\begin{aligned} V^0_j\otimes V^1_j=\text{ span}\left\{ \varphi ^0_{j,k_1}(x) \varphi ^1_{j,k_2}(y),\,k_1,k_2\in \mathbb{Z }\right\} ,\quad j\in \mathbb{Z }, \end{aligned}$$

form a multiresolution analysis of \(L^2(\mathbb{R }^2)\). Moreover, to compute the fast wavelet decomposition, in the multiresolution generated by \(V^1_j\otimes V^0_j\), it suffices to use the filters of \((\tilde{\varphi }^1,\tilde{\psi }^1)\) in the \(x\) direction and those of \((\tilde{\varphi }^0,\tilde{\psi }^0)\) in the \(y\) direction. The reconstruction is done with the filters of \((\varphi ^1,\psi ^1)\) and \((\varphi ^0,\psi ^0)\) respectively.

From relations (51) and (52), one can derive two interesting properties of biorthogonal multiresolution analyses \((V^1_j,\tilde{V}^1_j)\) and \(( V^0_j,\tilde{V}^0_j)\) (Kahane and Lemarié-Rieusset 1995):

$$\begin{aligned} \frac{d}{dx}V^1_j=V^0_j, \quad \quad \quad \quad \tilde{V}^0_j=\int \limits _{-\infty }^x\tilde{V}^1_j. \end{aligned}$$
(54)

The interest of relations (54) appears in the numerical implementation of fast divergence-free wavelet transform. This relation allows to build a multiresolution analysis of \((L^2(\mathbb{R }^2))^2\) that preserves the divergence-free property (Lemarié-Rieusset 1992).

As stated in (19), the space \(\mathcal{H }_{div}(\mathbb{R }^2)\) corresponds to the curl of \(H^1(\mathbb{R }^2)\) scalar potential. Then, taking the curl of any multiresolution analysis of \(H^1(\mathbb{R }^2)\) will provide a multiresolution analysis of \(\mathcal{H }_{div}(\mathbb{R }^2)\). However, let us consider a “regular” scalar multiresolution analysis of \(H^1(\mathbb{R }^2)\) generated by spaces \( V^a_j\otimes V^b_j\), with \(V^a_j\ne V^b_j\). Taking the curl of a such multiresolution analysis, we get:

$$\begin{aligned} \mathbf{curl}[V^a_j\otimes V^b_j]=\left( \begin{array}{ll} V^a_{j}\otimes {(V^b_{j})}^{\prime }\\ \, \\ - {(V^a_{j})}^{\prime }\otimes V^b_{j} \end{array} \right). \end{aligned}$$
(55)

Then, to deal with the divergence-free wavelets contained in the spaces \( \mathbf{curl}[V^a_j\otimes V^b_j]\), we have to manipulate four different types of biorthogonal wavelet filter banks associated respectively to the one-dimensional BMRAs that appear in (55): \(V^a_j, (V^a_j)^{\prime }, V^b_j\) and \((V^b_j)^{\prime }\). To overcome this problem, the two-dimensional scalar multiresolution analysis that we will consider is generated by spaces \(V^1_j\otimes V^1_j\) and using Lemarié-Rieusset’s results (54), one can easily prove that:

$$\begin{aligned} \mathbf{curl}\left(V^1_j\otimes V^1_j\right)\subset \left(V^1_j\otimes V^0_j\right)\times \left(V^0_j\otimes V^1_j\right)={\mathbf{V}}_j. \end{aligned}$$
(56)

Accordingly, the divergence-free scaling functions and wavelets of Sect. 5.1 verify:

$$\begin{aligned} {\varvec{\Phi }}^{div}_{j,{{{{{\varvec{k}}}}}}}=\mathbf{curl} [\varphi ^1_{j,k_1}\otimes \varphi ^1_{j,k_2}] =\left( \begin{array}{ll} \varphi ^1_{j,k_1}\otimes {(\varphi ^1_{j,k_2})}^{\prime }\\ \, \\ - {(\varphi ^1_{j,k_1})}^{\prime }\otimes \varphi ^1_{j,k_2} \end{array} \right) \in {\mathbf{V}}_j, \end{aligned}$$

and

$$\begin{aligned} {\varvec{\Psi }}^{div}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}} \!=\!\left( \begin{array}{ll} 2^{j_2\!+\!2}\psi ^1_{j_1,k_1}\otimes \psi ^0_{j_2,k_2}\\ \, \\ \!-\! 2^{j_1\!+\!2}\psi ^0_{j_1,k_1}\otimes \psi ^1_{j_2,k_2} \end{array} \right) \in \left(W^1_{j_1}\!\otimes \! W^0_{j_2}\right)\\ \times \left(W^0_{j_1}\otimes W^1_{j_2}\right). \end{aligned}$$

1.1 Fast Divergence-Free Wavelet Transform

By construction, we have seen that the vector spaces \(\mathbf{V}_j=\left(V^1_j\otimes V^0_j\right)\times \left(V^0_j\otimes V^1_j\right)\) constitute a multiresolution analysis of \((L^2(\mathbb{R }^2))^2\) and this multiresolution analysis preserves the divergence-free constraint (Lemarié-Rieusset 1992). From a standard anisotropic vector wavelet decomposition associated to \(\mathbf{V}_j\), the objective of this section is to describe how to compute in practice the anisotropic divergence-free wavelet decomposition of any \(\mathbf{u}\in \mathcal{H }_{div}(\mathbb{R }^2)\).

The standard anisotropic vector wavelet associated to \(\mathbf{V}_j\) are:

$$\begin{aligned} {\varvec{\Psi }}^{1}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}} =\left( \begin{array}{ll} \psi ^1_{j_1,k_1}\otimes \psi ^0_{j_2,k_2}\\ 0 \end{array} \right), \end{aligned}$$

and

$$\begin{aligned} {\varvec{\Psi }}^{2}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}} =\left( \begin{array}{ll} 0\\ \psi ^0_{j_1,k_1}\otimes \psi ^1_{j_2,k_2} \end{array} \right). \end{aligned}$$

Since \(\mathbf{u}\!=\!(u_1,u_2)\) belongs to \((L^2(\mathbb{R }^2))^2\) and \(({\varvec{\Psi }}^{1}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}}, {\varvec{\Psi }}^{2}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}})_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}\in \mathbb{Z }^2}\) is a wavelet basis of \((L^2(\mathbb{R }^2))^2\), we get:

$$\begin{aligned} \mathbf{u}=\sum _{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}\in \mathbb{Z }^2}\mathbf{d}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}^1 {\varvec{\Psi }}^{1}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}} +\sum _{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}\in \mathbb{Z }^2}\mathbf{d}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}^2 {\varvec{\Psi }}^{2}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}}. \end{aligned}$$
(57)

Through an easy calculation, by identification one can show that:

$$\begin{aligned} u_1=\sum _{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}\in \mathbb{Z }^2}\mathbf{d}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}^1\,\psi ^1_{j_1,k_1}\otimes \psi ^0_{j_2,k_2}, \end{aligned}$$

and

$$\begin{aligned} u_2=\sum _{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}\in \mathbb{Z }^2}\mathbf{d}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}^2\,\psi ^0_{j_1,k_1}\otimes \psi ^1_{j_2,k_2}. \end{aligned}$$

Following Deriaz and Perrier (2006) and using the relation:

$$\begin{aligned} {\varvec{\Psi }}^{div}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}} =2^{j_2+2}{\varvec{\Psi }}^{1}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}}-2^{j_1+2} {\varvec{\Psi }}^{2}_{{{{{{\varvec{j}}}}}},{{{{{\varvec{k}}}}}}}, \end{aligned}$$
(58)

we find:

$$\begin{aligned} \mathbf{d}^{div}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}=\frac{2^{j_2+2}}{4^{j_1+2}+4^{j_2+2}} \mathbf{d}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}^1-\frac{2^{j_1+2}}{4^{j_1+2}+4^{j_2+2}} \mathbf{d}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}^2, \end{aligned}$$
(59)

and

$$\begin{aligned} \mathbf{d}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}^1=2^{j_2+2}\mathbf{d}^{div}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}, \quad \quad \quad \quad \mathbf{d}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}^2=-2^{j_1+2}\mathbf{d}^{div}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}. \end{aligned}$$
(60)

Therefore, decomposition and reconstruction associated to divergence-free wavelets is simply performed using scalar wavelet filter banks. Finally, the algorithm is of low complexity and its structure remains identical to the scalar case.

The algorithm is summarized then as follows. Starting with \(\mathbf{u}=(u_1,u_2)\), to get the divergence-free wavelet coefficients \(\mathbf{d}^{div}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\):

  1. 1a.

    Compute \(\mathbf{d}^{1}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\)  associated to \(u_1\) in \(V^1_j\otimes V^0_j\).

  2. 2a.

    Compute \(\mathbf{d}^{2}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\)  associated to \(u_2\) in \(V^0_j\otimes V^1_j\).

  3. 3a.

    Compute \(\mathbf{d}^{div}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\)  from \(\mathbf{d}^{1}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\)  and \(\mathbf{d}^{2}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\) using (59).

For the reconstruction:

  1. 1b.

    Compute \(\mathbf{d}^{1}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\) and \(\mathbf{d}^{2}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\) from \(\mathbf{d}^{div}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\) using (60).

  2. 2b.

    Compute \(u_1\) from \(\mathbf{d}^{1}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\) in \(V^1_j\otimes V^0_j\).

  3. 3b.

    Compute \(u_2\) from \(\mathbf{d}^{2}_{{{{{\varvec{j}}}}},{{{{\varvec{k}}}}}}\) in \(V^0_j\otimes V^1_j\).

Steps 1a and Step 2a correspond to a two dimensional fast wavelet transform. Step 3a is a change of basis which theoretical complexity is linear, thus the theoretical complexity of the decomposition phase is about \(O(N)\). As the same, Step 3b is a change of basis, Steps 2b and Step 3b correspond to an inverse two dimensional fast wavelet transform, the theoretical complexity of recomposition phase is also about \(O(N)\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadri-Harouna, S., Dérian, P., Héas, P. et al. Divergence-Free Wavelets and High Order Regularization. Int J Comput Vis 103, 80–99 (2013). https://doi.org/10.1007/s11263-012-0595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0595-7

Keywords

Navigation