International Journal of Computer Vision

, Volume 98, Issue 2, pp 123–145

Estimating the Natural Illumination Conditions from a Single Outdoor Image

Authors

    • School of Computer ScienceCarnegie Mellon University
  • Alexei A. Efros
    • School of Computer ScienceCarnegie Mellon University
  • Srinivasa G. Narasimhan
    • School of Computer ScienceCarnegie Mellon University
Article

DOI: 10.1007/s11263-011-0501-8

Cite this article as:
Lalonde, J., Efros, A.A. & Narasimhan, S.G. Int J Comput Vis (2012) 98: 123. doi:10.1007/s11263-011-0501-8

Abstract

Given a single outdoor image, we present a method for estimating the likely illumination conditions of the scene. In particular, we compute the probability distribution over the sun position and visibility. The method relies on a combination of weak cues that can be extracted from different portions of the image: the sky, the vertical surfaces, the ground, and the convex objects in the image. While no single cue can reliably estimate illumination by itself, each one can reinforce the others to yield a more robust estimate. This is combined with a data-driven prior computed over a dataset of 6 million photos. We present quantitative results on a webcam dataset with annotated sun positions, as well as quantitative and qualitative results on consumer-grade photographs downloaded from Internet. Based on the estimated illumination, we show how to realistically insert synthetic 3-D objects into the scene, and how to transfer appearance across images while keeping the illumination consistent.

Keywords

Illumination estimationData-driven methodsShadow detectionScene understandingImage synthesis

Copyright information

© Springer Science+Business Media, LLC 2011