Skip to main content

Advertisement

Log in

Anthropometric 3D Face Recognition

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a novel anthropometric three dimensional (Anthroface 3D) face recognition algorithm, which is based on a systematically selected set of discriminatory structural characteristics of the human face derived from the existing scientific literature on facial anthropometry. We propose a novel technique for automatically detecting 10 anthropometric facial fiducial points that are associated with these discriminatory anthropometric features. We isolate and employ unique textural and/or structural characteristics of these fiducial points, along with the established anthropometric facial proportions of the human face for detecting them. Lastly, we develop a completely automatic face recognition algorithm that employs facial 3D Euclidean and geodesic distances between these 10 automatically located anthropometric facial fiducial points and a linear discriminant classifier. On a database of 1149 facial images of 118 subjects, we show that the standard deviation of the Euclidean distance of each automatically detected fiducial point from its manually identified position is less than 2.54 mm. We further show that the proposed Anthroface 3D recognition algorithm performs well (equal error rate of 1.98% and a rank 1 recognition rate of 96.8%), out performs three of the existing benchmark 3D face recognition algorithms, and is robust to the observed fiducial point localization errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Osaimi, F., Bennaman, M., & Mian, A. (2009). An expression deformation approach to non-rigid 3d face recognition. International Journal of Computer Vision, 81, 302–316.

    Article  Google Scholar 

  • BenAbdelkader, C., & Griffin, P. A. (2005). Comparing and combining depth and texture cues for face recognition. Image and Vision Computing, 23(3), 339–352.

    Article  Google Scholar 

  • Besl, P. J. (1988). Surfaces in range image understanding. New York: Springer.

    MATH  Google Scholar 

  • Besl, P. J., & McKay, H. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Article  Google Scholar 

  • Beumier, C., & Acheroy, M. (2001). Face verification from 3d and grey level clues. Pattern Recognition Letters, 22(12), 1321–1329.

    Article  MATH  Google Scholar 

  • Bovik, A. C., Clark, M., & Geisler, W. S. (1990). Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1), 55–73.

    Article  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2005). Three-dimensional face recognition. International Journal of Computer Vision, 64(1), 5–30.

    Article  Google Scholar 

  • Cadoni, M., Bicego, M., & Grosso, E. (2009). 3D face recognition using joint differential invariants. In Advances in biometrics (pp. 279–288). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chang, K. I., Bowyer, K. W., & Flynn, P. J. (2005). An evaluation of multimodal 2d+3d face biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 619–624.

    Article  Google Scholar 

  • Comas, J. (1960). Manual of physical anthropology. Charles C. Thomas.

  • DeCarlo, D., Metaxas, D., & Stone, M. (1998). An anthropometric face model using variational techniques. In SIGGRAPH (pp. 67–74).

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Do Carmo, M. P. (1976). Differential geometry of curves and surfaces. New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Douglas-Cowie, E., Cowie, R., & Schroder, M. (2000). A new emotion database: considerations, sources and scope. In Proceedings of the ISCA ITRW on speech and emotion (pp. 39–44).

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Egan, J. P. (1975). Signal detection theory and ROC analysis. New York: Academic Press.

    Google Scholar 

  • Farkas, L. G. (1987). Anthropometric facial proportions in medicine. Thomas Books.

  • Farkas, L. G. (1981). Anthropometry of the head and face in medicine. New York: Elsevier.

    Google Scholar 

  • Farkas, L. G. (Ed.) (1994). Anthropometry of the head and face. New York: Raven Press.

    Google Scholar 

  • Farkas, L. G. et al. (1985). An attempt to define the attractive face: an anthropometric study. In 18th annual meeting of the American society for aesthetic plastic surgery, Boston.

  • Gordon, G. G. (1992). Face recognition based on depth and curvature features. In Computer vision and pattern recognition, 1992. Proceedings CVPR ’92, 1992, IEEE Computer Society Conference on (pp. 808–810).

  • Gupta, S., Aggarwal, J. K., Markey, M. K., & Bovik, A. C. (2007a). 3d face recognition founded on the structural diversity of human faces. In Computer vision and pattern recognition, 2007 IEEE computer society conference on, Minneapolis, MN.

  • Gupta, S., Markey, M. K., Aggarwal, J. K., & Bovik, A. C. (2007b). 3d face recognition based on Euclidean and geodesic distances. In Electronic imaging, IS&T/SPIE 19th annual symposium on, San Jose, CA.

  • Gupta, S., Markey, M. K., & Bovik, A. C. (2007c). Advances and challenges in 3D and 2D+3D human face recognition. In Pattern recognition research horizons. New York: Nova Science.

    Google Scholar 

  • Gupta, S., Castleman, K. R., Markey, M. K., & Bovik, A. C. (2010). Texas 3d face recognition database. In Image analysis and interpretation, 2010 IEEE Southwest Symposium on, Austin, TX.

  • Hamza, A., & Krim, H. (2006). Geodesic matching of triangulated surfaces. IEEE Transactions on Image Processing, 15(8), 2249–2258.

    Article  Google Scholar 

  • Henderson, J. M., Williams, C. C., & Falk, R. J. (2005). Eye movements are functional during face learning. Memory and Cognition, 33(1), 98–106.

    Google Scholar 

  • Heseltine, T. N. Pears, & Austin, J. (2004). Three-dimensional face recognition: a fishersurface approach. In A. Campilho, & M. Kamel (Eds.), LNCS : Vol. 3212. International conference on image analysis and recognition (pp. 684–691). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Hesher, C., Srivastava, A., & Erlebacher, G. (2003). A novel technique for face recognition using range imaging. In Signal processing and its applications, 2003. Proceedings. Seventh international symposium on (Vol. 2, pp. 201–204).

  • Hrdlička, A. (1939). Practical anthropometry. Wister Institute of Anatomy and Biology, Philadelphia.

  • Hüsken, M., Brauckmann, M., Gehlen, S., & Von der Malsburg, C. (2005). Strategies and benefits of fusion of 2d and 3d face recognition. In Computer vision and pattern recognition, 2005 IEEE computer society conference on (Vol. 3, pp. 174–174).

  • Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.

    Article  Google Scholar 

  • Irfanöglu, M. O., Gökberk, B., & Akarun, L. (2004). 3d shape-based face recognition using automatically registered facial surfaces. In Proceedings of the 17th international conference on pattern recognition. IEEE Computer Society, Dept. of Comput. Eng., Bogazici Univ., Turkey (Vol. 4, pp. 183–186).

  • Jahanbin, S., Bovik, A. C., & Choi, H. (2008). Automated facial feature detection from portrait and range images. In Image analysis and interpretation, 2008. SSIAI 2008. IEEE southwest symposium on (pp. 25–28).

  • Koudelka, M. L., Koch, M. W., & Russ, T. D. (2005). A prescreener for 3d face recognition using radial symmetry and the Hausdorff fraction. In Computer vision and pattern recognition, 2005 IEEE computer society conference on (Vol. 3, pp. 168–168).

  • Kukula, E. P., Elliott, S. J., Waupotitsch, R., & Pesenti, B. (2004). Effects of illumination changes on the performance of geometrix facevision/spl reg/ 3d frs. In Security technology, 2004. 38th annual 2004 international Carnahan conference on (pp. 331–337).

  • Lee, Y., Song, H., Yang, U., Shin, H., & Sohn, K. (2005). Local feature based 3d face recognition. In LNCS : Vol. 3546. Audio- and video-based biometric person authentication, 2005 international conference on (pp. 909–918). Springer: Berlin.

    Chapter  Google Scholar 

  • Lu, X., Jain, A. K., & Colbry, D. (2006). Matching 2.5d face scans to 3d models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 31–43.

    Article  Google Scholar 

  • Malassiotis, S., & Strintzis, M. G. (2005). Robust face recognition using 2d and 3d data: pose and illumination compensation. Pattern Recognition, 38(12), 2537–2548.

    Article  Google Scholar 

  • Maurer, T., Guigonis, D., Maslov, I., Pesenti, B., Tsaregorodtsev, A., West, D., & Medioni, G. (2005). Performance of geometrix activeidTM 3d face recognition engine on the frgc data. In Computer vision and pattern recognition, 2005 IEEE computer society conference on (Vol. 3, pp. 154–154).

  • Mian, A., Bennamoun, M., & Owens, R. (2007). An efficient multimodal 2d-3d hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 1927–1943.

    Article  Google Scholar 

  • Moreno, A. B., Sanchez, A., Fco, J., Fco, V., & Diaz, J. (2003). Face recognition using 3d surface-extracted descriptors. In Irish machine vision and image processing conference (IMVIP 2003).

  • Penev, P. S., & Atick, J. J. (1996). Local feature analysis: a general statistical theory for object representation. Network: Computation in Neural Systems, 7, 477–500.

    Article  MATH  Google Scholar 

  • Phillips, P. J., Grother, P., Micheals, R. J., Blackburn, D. M., Tabassi, E., & Bone, M. (2003). Face recognition vendor test 2002 evaluation report. Tech. rep., National Institute of Standards and Technology.

  • Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview of the face recognition grand challenge. In Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on (Vol. 1, pp. 947–954).

  • Rodriguez, J. J., & Aggarwal, J. K. (1990). Matching aerial images to 3-d terrain maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(12), 1138–1149.

    Article  Google Scholar 

  • Rogers, B. O. (1974). The role of physical anthropometry in plastic surgery today. Clinical Plastic Surgery, 1, 439.

    Google Scholar 

  • Russ, T. D., Koch, M. W., & Little, C. Q. (2005). A 2d range Hausdorff approach for 3d face recognition. In Computer vision and pattern recognition, 2005 IEEE computer society conference on (Vol. 3, pp. 169–176).

  • Samir, C., Srivastava, A., Daoud, M., & Klassen, E. (2009). An intrinsic framework for analysis of facial surfaces. International Journal of Computer Vision, 82, 80–95.

    Article  Google Scholar 

  • Savran, A., Alyz, N., Dibekliolu, H., Eliktutan, O., Gkberk, B., Sankur, B., & Akarun, L. (2008). Bosphorus database for 3d face analysis. In LNCS : Vol. 5372/2008. Biometrics and identity management (pp. 47–56). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Sharma, S. (1996). Applied multivariate techniques. New York: Wiley.

    Google Scholar 

  • Shi, J., Samal, A., & Marx, D. (2006). How effective are landmarks and their geometry for face recognition? Computer Vision and Image Understanding, 102(2), 117–133.

    Article  Google Scholar 

  • Srivastava, A., Samir, C., Joshi, H. S., & Daoudi, M. (2009). Elastic shape models for face analysis using curvilinear coordinates. Journal of Mathematical Imaging and Vision, 33, 253–265.

    Article  MathSciNet  Google Scholar 

  • Tanaka, J., & Farah, M. (2003). The holistic representation of faces. In Perception of faces, objects and scenes: analytical and holistic processes (pp. 53–74). New York: Oxford University Press.

    Google Scholar 

  • Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

  • Tsalakanidou, F., Malassiotis, S., & Strintzis, M. G. (2005). Face localization and authentication using color and depth images. IEEE Transactions on Image Processing, 14(2), 152–168.

    Article  Google Scholar 

  • Wang, Y., & Chua, C. (2005). Face recognition from 2d and 3d images using 3d Gabor filters. Image and Vision Computing, 23(11), 1018–1028.

    Article  Google Scholar 

  • Wang, Y., Chua, C., & Ho, Y. (2002). Facial feature detection and face recognition from 2d and 3d images. Pattern Recognition Letters, 23(10), 1191–1202.

    Article  MATH  Google Scholar 

  • Wiskott, L., Fellous, J. M., Kuiger, N., & von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 775–779.

    Article  Google Scholar 

  • Xu, C., Wang, Y., Tan, T., & Quan, L. (2004). Automatic 3d face recognition combining global geometric features with local shape variation information. In Automatic face and gesture recognition, 2004. Proceedings. Sixth IEEE international conference on (pp. 308–313).

  • Yin, L., Wei, X., Sun, Y., Wang, J., & Rosato, M. J. (2006). A 3d facial expression database for facial behavior research. In Automatic face and gesture recognition, 2006. FGR 2006. 7th international conference on (pp. 211–216).

  • Zhang, G., & Wang, Y. (2009). Faceprint: fusion of local features for 3D face recognition. In Advances in biometrics (pp. 394–403). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Zhang, L., Razdan, A., Farin, G., Femiani, J., Bae, M., & Lockwood, C. (2006). 3d face authentication and recognition based on bilateral symmetry analysis. Visual Computer, 22(1), 43–55.

    Article  MATH  Google Scholar 

  • Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: a literature survey. ACM Computing Surveys, 35(4), 399–459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Markey, M.K. & Bovik, A.C. Anthropometric 3D Face Recognition. Int J Comput Vis 90, 331–349 (2010). https://doi.org/10.1007/s11263-010-0360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0360-8

Keywords

Navigation