Skip to main content
Log in

Complete nucleotide sequence of Klebsiella phage P13 and prediction of an EPS depolymerase gene

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The complete genome of Klebsiella phage P13 was sequenced and analyzed. Bacteriophage P13 has a double-stranded linear DNA with a length of 45,976 bp and a G+C content of 51.7 %, which is slightly lower than that of Klebsiella pneumoniae KCTC 2242. The codon biases of phage P13 are very similar to those of SP6-like phages and K. pneumoniae KCTC 2242. Bioinformatics analysis shows that the phage P13 genome has 282 open reading frames (ORFs) that are greater than 100 bp in length, and 50 of these ORFs were identified as predicted genes with an average length of 833 bp. Among these genes, 41 show homology to known proteins in the GenBank database. The functions of the 24 putative proteins were investigated, and 13 of these were found to be highly conserved. According to the homology analysis of the 50 predicted genes and the whole genome, phage P13 is homologous to SP6-like phages. Furthermore, the morphological characteristics of phage P13 suggest that it belongs to the SP6-like viral genus of the Podoviridae subfamily Autographivirinae. Two hypothetical genes encoding an extracellular polysaccharide depolymerase were predicted using PSI-BLAST. This analysis serves as groundwork for further research and application of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.W. Hendrix, M.C.M. Smith, R.N. Burns, M.E. Ford, G.F. Hatfull, Proc. Natl. Acad. Sci. 96, 2192–2197 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. B. Steuernagel, S. Taudien, H. Gundlach, M. Seidel, R. Ariyadasa, D. Schulte, A. Petzold, M. Felder, A. Graner, U. Scholz, K.F. Mayer, M. Platzer, N. Stein, BMC Genom. 10, 547 (2009)

    Article  Google Scholar 

  3. S.G. Stahlhut, C. Struve, K.A. Krogfelt, A. Reisner, FEMS. Immunol. Med. Microbiol. 65(2), 350–359 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. M.H. Adams, B.H. Park, Virology 2(6), 719–736 (1956)

    Article  CAS  PubMed  Google Scholar 

  5. H. Thurow, H. Niemann, C. Rudolph, S. Stirm, Virology 1(58), 306–309 (1974)

    Article  Google Scholar 

  6. K.A. Hughes, I.W. Sutherland, M.V. Jones, Microbiology 144, 3039–3047 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. W. Nimmich, M. Curvall, B. Lindberg, J. Lonngren, Carbohydr. Res. 42(1), 95–105 (1975)

    Article  Google Scholar 

  8. Y. Liu, G. Li, Z. Mo, Z. Chai, A. Shang, H. Mou, J. Ocean, J. Ocean Univ. China 13(1), 163–168 (2014)

    Article  CAS  Google Scholar 

  9. S. Kumari, K. Harjai, S. Chhibber, Folia Microbiol. 55(3), 221–227 (2010)

    Article  CAS  Google Scholar 

  10. J. Besemer, M. Borodovsky, Nucleic Acids Res. 27(19), 3911–3920 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. A.L. Delcher, D. Harmon, S. Kasif, O. White, S.L. Salzberg, Nucleic Acids Res. 27(23), 4636–4641 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. S. Salzberg, A. Delcher, S. Kasif, O. White, Nucleic Acids Res. 26(2), 544–548 (1998)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. T.M. Lowe, S.R. Eddy, Nucleic Acids Res. 25, 955–964 (1997)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. A.M.Q. King, M.J. Adams, E.B. Carstens, E.J. Lefkowitz, Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (Elsevier Academic Press, Oxford, 2011), pp. 75–76

    Google Scholar 

  15. D. Scholl, S. Adhya, C.R. Merril, J. Bacteriol. 184, 2833–2836 (2002)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Y. Zhu, Y. Li, X. Zheng, H. Guo, Modern Molecular Biology (High Education Press, Beijing, 1997), pp. 120–122, 166–169, 187–219

  17. B. Lafay, A.T. Lloyd, M.J. McLean, K.M. Devine, P.M. Sharp, K.H. Wolfe, Nucleic Acids Res. 27, 1642–1649 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. I. Moszer, E.P.C. Rocha, A. Danchin, Curr. Opin. Microbiol. 2, 524–528 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. R. Sousa, S. Mukherjee, Nucleic Acids Res. Mol. Biol. 73, 1–41 (2003)

    CAS  Google Scholar 

  20. S. Casjens, Mol. Microbiol. 49, 277–300 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. D. Scholl, J. Kieleczawa, P. Kemp, J. Rush, C.C. Richardson, C. Merril, S. Adhya, I.J. Molineux, J. Mol. Biol. 335, 1151–1171 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. I.N. Wang, D.L. Smith, R. Young, Annu. Rev. Microbiol. 54, 799–825 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. R. Young, U. Bläsi, FEMS Microbiol. Rev. 17, 191–205 (1995)

    Article  CAS  PubMed  Google Scholar 

  24. C.E. Catalano, D. Cue, M. Feiss, Mol. Microbiol. 16, 1075–1086 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. S. Chow, E. Daub, H. Murialdo, Gene 60, 277–289 (1983)

    Article  Google Scholar 

  26. A. Becker, H. Murialdo, J. Bacteriol. 172, 2819–2824 (1990)

    PubMed Central  CAS  PubMed  Google Scholar 

  27. A.T. Dobbins, M.J. George, D.A. Basham, M.E. Ford, J.M. Houtz, M.L. Pedulla, J.G. Lawrence, G.F. Hatfull, R.W. Hendrix, J. Bacteriol. 186, 1933–1944 (2004)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. J. Zhu, X. Rao, Y. Tan, K. Xiong, Z. Hu, Z. Chen, X. Jin, S. Li, Genomics 96(3), 167–172 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. D. Scholl, S. Rogers, S. Adhya, C.R. Merril, J. Virol. 75(6), 2509–2515 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. M. Simoes, L.C. Simoes, M.J. Vieira, LWT Food Sci. Technol. 43, 573–583 (2010)

    Article  CAS  Google Scholar 

  31. G.W. Hanlon, S.P. Denyer, C.J. Olliff, L.J. Ibrahim, Appl. Environ. Microb. 67, 2746–2753 (2001)

    Article  CAS  Google Scholar 

  32. W.S. Kim, K. Geider, Phytopathology 90, 1263–1268 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. A. Scorpio, S.A. Tobery, W.J. Ribot, A.M. Friedlander, Antimicrob. Agents Chemother 52, 1014–1020 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. G.G. Dutton, J.L. Di Fabio, D.M. Leek, E.H. Merrifield, J.R. Nunn, A.M. Stephen, Carbohydr. Res. 97, 127–138 (1981)

    Article  CAS  PubMed  Google Scholar 

  35. J.L. Di Fabio, D.N. Karunaratne, G.G. Dutton, Carbohydr. Res. 144, 251–261 (1985)

    Article  PubMed  Google Scholar 

  36. F. Altmann, R. Christian, T. Czerny, W. Nimmich, L. Marz, Eur. J. Biochem. 189, 307–312 (1990)

    Article  CAS  PubMed  Google Scholar 

  37. P. Cescutti, R. Toffanin, B.J. Kvam, S. Paoletti, G.G. Dutton, Eur. J. Biochem. 213, 445–453 (1993)

    Article  CAS  PubMed  Google Scholar 

  38. L.Y. Qiao, H.J. Mou, X.L. Jiang, Food Ind. Sci. 4, 93–97 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (201362041 and 201262021), National Natural Science Foundation of China (41076087), Program for New Century Excellent Talents in University (NCET-10-0719), and Program for Changjiang Scholars and Innovative Research Team in University (IRT1188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijin Mou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, A., Liu, Y., Wang, J. et al. Complete nucleotide sequence of Klebsiella phage P13 and prediction of an EPS depolymerase gene. Virus Genes 50, 118–128 (2015). https://doi.org/10.1007/s11262-014-1138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1138-9

Keywords

Navigation