Veterinary Research Communications

, Volume 35, Issue 2, pp 103–121

Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells

  • Arianna Barbara Lovati
  • Bruna Corradetti
  • Anna Lange Consiglio
  • Camilla Recordati
  • Elisa Bonacina
  • Davide Bizzaro
  • Fausto Cremonesi
Original Article

DOI: 10.1007/s11259-010-9457-3

Cite this article as:
Lovati, A.B., Corradetti, B., Lange Consiglio, A. et al. Vet Res Commun (2011) 35: 103. doi:10.1007/s11259-010-9457-3

Abstract

The aim of the study was to compare in vitro the stemness features of horse progenitor cells derived from bone marrow (BM-MSCs), amniotic fluid (AF-MSCs) and umbilical cord matrix (EUC-MSCs). It has been suggested that there may be a stem cell population within both umbilical cord matrix and amniotic fluid. However, little knowledge exists about the characteristics of these progenitor cells within these sources in the equine species. This study wanted to investigate an alternative and non-invasive stem cell source for the equine tissue engineering and to learn more about the properties of these cells for future cell banking. Bone marrow, umbilical cord and amniotic fluid samples were harvested from different horses. Cells were analyzed for proliferation, immunocytochemical, stem cell gene expression and multilineage plasticity. BM- and AF-MSCs took similar time to reach confluence and showed comparable plating efficiency. All cell lines expressed identical stem cell markers and capability to differentiate towards osteogenic lineage. Almost all cell lines differentiated into the adipogenic lineage as demonstrated by cytochemical staining, even if no adipose gene expression was detectable for AF-MSCs. AF- and EUC-MSCs showed a limited chondrogenic differentiation compared with BM-MSCs as demonstrated by histological and biochemical analyses. These findings suggest that AF-MSCs appeared to be a readily obtainable and highly proliferative cell line from an uninvasive source that may represent a good model system for stem cell biology. More studies are needed to investigate their multilineage potential. EUC-MSCs need to be further investigated regarding their particular behavior in vitro represented by spheroid formation.

Keywords

Progenitor cellsEquineBone marrowUmbilical cord matrixAmniotic fluidCharacterization

Supplementary material

11259_2010_9457_MOESM1_ESM.tif (5.9 mb)
Fig. 4Immunostaining characterization of BM-, AF and EUC-MSCs. Cells were stained just with the secondary antibodies to evaluate their negative response (Magnification: 20X; scale bars: 20 μm) (TIFF 6008 kb)

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Arianna Barbara Lovati
    • 1
  • Bruna Corradetti
    • 2
  • Anna Lange Consiglio
    • 1
  • Camilla Recordati
    • 4
  • Elisa Bonacina
    • 3
  • Davide Bizzaro
    • 2
  • Fausto Cremonesi
    • 1
  1. 1.Department of Veterinary Clinical Science, Equine Reproduction UnitUniversità degli Studi di MilanoLodiItaly
  2. 2.Department of Biochemistry, Biology and GeneticsUniversità Politecnica delle MarcheAnconaItaly
  3. 3.IRCCS Istituto Ortopedico GaleazziCell and Tissue Engineering LaboratoryMilanItaly
  4. 4.Mouse & Animal Pathology Laboratory (MAPLab)—FONDAZIONE FILARETE Viale Ortles 22/4Milano (MI)Italy