Skip to main content
Log in

How liana loads alter tree allometry in tropical forests

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Intense competition with lianas (wood climbers) can limit tree growth, reproduction, and survival. However, the negative effects of liana loads on tree allometry have not yet been addressed. We investigated the hypothesis that liana loading on tree crown alters tree’s allometry, expressed through slenderness (height–diameter ratio). The relationship between trunk slenderness and percentage of tree crown covered by lianas was investigated for 12 tree species from 10 fragments of the Semideciduous Seasonal Forest in Southeastern Brazil. We also tested whether the relationship between slenderness and wood density differ between trees without lianas and trees heavily infested. Liana loads significantly altered tree allometry by decreasing slenderness, even when lianas covered less than 25% of tree crown. Heavy-wood species decreased their trunk slenderness in a greater ratio than light-wood species. Our findings indicate that liana infestation shifts tree allometry, and these effects are stronger on heavy-wood tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anten NPR, Schieving F (2010) The role of wood mass density and mechanical constraints in the economy of tree architecture. Am Nat 175:250–260

    Article  PubMed  Google Scholar 

  • Campanello PI, Garibaldi JF, Gatti MG, Goldstein G (2007) Lianas in a subtropical Atlantic forest: host preference and tree growth. For Ecol Manag 242:250–259

    Article  Google Scholar 

  • Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and woody hemiepiphytes in a Costa Rican tropical wet forest. J Trop Ecol 6:321–331

    Article  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Chave J, Coomes DA, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12(4):351–366. doi:10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  • Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70:171–207

    Article  Google Scholar 

  • Cottan G, Curtis JT (1956) The use of distance measures in phytossociological sampling. Ecology 37:451–460

    Article  Google Scholar 

  • Dillenburg LR, Whigham DF, Teramura AH, Forseth IN (1993) Effects of below-and aboveground competition from the vines Lonicera japonica and Parthenocissus quinquefolia on the growth of the tree host Liquidambar styraciflua. Oecologia 93(1):48–54

    Article  Google Scholar 

  • Falster DS, Warton DI, Wright IJ (2003) (S)MATR: standardized major axis tests and routines. http://www.bio.mq.edu.au/ecology/SMATR. Accessed Apr 2009

  • Fonseca MG, Vidal E, Santos FAM (2009) Interspecific variation in the fruiting of an Amazonian timber tree: implications for management. Biotropica 41:179–185

    Article  Google Scholar 

  • Gandolfi S, Leitao Filho HF, Bezerra CLF (1995) Levantamento florístico e caráter sucessional das espécies arbustivo-arbóreas de uma floresta mesófila semidecídua no município de Guarulhos, SP. Rev bras de biol 55(4):753–767

    Google Scholar 

  • Gerwing JJ, Farias DL (2000) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. J Trop Ecol 16:327–335

    Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade, a whole-plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Holbrook NM, Putz FE (1989) Influence of neighbors on tree form—effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (sweet gum). Am J Bot 76:1740–1749

    Article  Google Scholar 

  • Ichihashi R, Tateno M (2015) Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees. New Phytol 207:604–612

    Article  PubMed  Google Scholar 

  • Ingwell LL, Joseph Wright S, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98:879–887

    Article  Google Scholar 

  • King DA (1981) Tree dimensions: maximizing the rate of height growth in dense stands. Oecologia 51:351–356

    Article  Google Scholar 

  • King DA (1987) Load bearing capacity of understory treelets of a tropical wet forest. Bull Torrey Bot Club 114:419–428

    Article  Google Scholar 

  • King DA (1996) Alometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  • King DA, Davies SJ, Tan Sand Noor NSMD (2006) The role of density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680

    Article  Google Scholar 

  • Kohyama T, Hotta M (1990) Significance of allometry in saplings. Funct Ecol 4:512–521

    Article  Google Scholar 

  • Kooyman RM, Westoby M (2009) Costs of height gain in rainforest saplings: main-stem scaling, functional traits and strategy variation across 75 species. Ann Bot 185:1–7

    Google Scholar 

  • Laurance WF, Pérez-Salicrup D, Delamônica P, Fearnside PM, d’Angelo S, Jerolinski A, Pohl L, Lovejoy TE (2001) Rain forest fragmentation and structure of Amazonian liana communities. Ecology 82:105–116

    Article  Google Scholar 

  • Martins SV, Júnior RC, Rodrigues RR, Gandolfi S (2004) Colonization gaps by death of bamboo clamps in a semideciduous mesophytic forest in south-eastern Brazil. Plant Ecol 172:121–131

    Article  Google Scholar 

  • Miranda ZAI (1996) Plano de gestão da Área de Proteção Ambiental da região de Sousa e Joaquim Egídio—APA Municipal. SEPLAMA—Prefeitura Municipal de Campinas, Campinas

    Google Scholar 

  • Mello MHA, Pedro Junior MJ, Ortolani AA, Alfonsi RR (1994) Chuva e temperatura: cem anos de observações em Campinas. Boletim Técnico 154. Instituto Agronômico de Campinas

  • Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227

    Article  Google Scholar 

  • Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007) Comparative height-crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot 94:1951–1962

    Article  PubMed  Google Scholar 

  • Phillips OL, Martinez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Cerón C, Flora AD, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Salicrup DR (2001) Effect of liana cutting on tree regeneration in a liana Forest in Amazonian Bolívia. Ecology 82:389–396

    Article  Google Scholar 

  • Pérez-Salicrup DR, Barker MG (2000) Effect of liana cutting on water potential and growth of Senna multijuga (Caesalpiniodeae) trees in a Bolivian tropical forest. Oecologia 124:369–475

    Article  Google Scholar 

  • Poorter L, Bongers F, Sterck FJ, Wöll H (2003) Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology 84:602–608

    Article  Google Scholar 

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs and functional groups. Ecology 87:1289–1301

    Article  PubMed  Google Scholar 

  • Putz FE, Coley PD, Lu K, Montalvo A, Aiello A (1983) Uprooting and snaping in trees: structural determinants and ecological consequences. Can J For Res 13:1011–1020

    Article  Google Scholar 

  • Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:1713–1724

    Article  Google Scholar 

  • R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.r-project.org/. Accessed 7 Dec 2015

  • Rodrigues RR, Martins SV, Gandolfi S (2007) High diversity forest restoration in degraded areas: methods and projects in Brazil. Nova, New York, p 286

    Google Scholar 

  • Santos K, Kinoshita LS, dos Santos FA (2007) Tree species composition and similarity in semideciduous forest fragments of southeastern Brazil. Biol Conserv 135:268–277

    Article  Google Scholar 

  • Schnitzer SA, Bongers FA (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230

    Article  Google Scholar 

  • Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13:849–857

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Bongers FA (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14:397–406

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Kuzee M, Bongers F (2005) Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J Ecol 93:1115–1125

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman and Company, San Francisco

    Google Scholar 

  • Stevens GC (1987) Lianas as structural parasites: the Bursera simaruba example. Ecology 68:77–81

    Article  Google Scholar 

  • Sterck F, Bongers F (1998) Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am J Bot 85(2):266

    Article  CAS  PubMed  Google Scholar 

  • Tabarelli M, Mantovani W (1997) Colonização de clareiras naturais na floresta atlântica no sudeste do Brasil. Braz J Bot 20(1):57–66

    Article  Google Scholar 

  • Toledo-Aceves T, Swaine MD (2008a) Above-and below-ground competition between the liana Acacia kamerunensis and tree seedlings in contrasting light environments. Plant Ecol 196(2):233–244

    Article  Google Scholar 

  • Toledo-Aceves T, Swaine MD (2008b) Effect of lianas on tree regeneration in gaps and forest understorey in a tropical forest in Ghana. J Veg Sci 19(5):717–728

    Article  Google Scholar 

  • Thomas SC (1996) Asymptotic height as a predictor of growth and allometric characteristics in Malaysian Rain Forest trees. Am J Bot 83:556–566

    Article  Google Scholar 

  • vand der Heijden GMF, Phillips OL (2009) Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosci Discuss 6(2):2217–2226

    Article  Google Scholar 

  • van der Heijden GM, Feldpausch TR, de la Fuente Herrero A, van der Velden NK, Phillips OL (2010) Calibrating the liana crown occupancy index in Amazonian forests. For Ecol Manag 260:549–555

    Article  Google Scholar 

  • Van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378

    Article  PubMed  Google Scholar 

  • Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada ao sistema universal. IBGE, Rio de Janeiro

    Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Westoby M, Falster DS, Molest AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wright SJ, Calderón O, Hernandéz A, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484–489

    Article  Google Scholar 

  • Wright SJ, Jamarillo MA, Pavon J, Condit R, Hubbell SP, Foster RB (2005) Reproductive size thresholds in tropical trees: variation among individuals, species and forests. J Trop Ecol 21:307–315

    Article  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad Digit Repos. doi:10.5061/dryad.234

    Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers who improved the manuscript with their comments. A. S. Dias was supported by Grants from São Paulo Research Foundation FAPESP (2010/11459) and the Brazilian National Council of Technological and Scientific Development CNPq (233206/2014-0). F. A. M. Santos and F. R. Martins were supported by Grants from CNPq (Grants 304937/2007-0 and 308853/2010-5, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arildo S. Dias.

Additional information

Communicated by Martin Nunez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, A.S., dos Santos, K., dos Santos, F.A.M. et al. How liana loads alter tree allometry in tropical forests. Plant Ecol 218, 119–125 (2017). https://doi.org/10.1007/s11258-016-0671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0671-0

Keywords

Navigation