Skip to main content
Log in

Liana distribution and community structure in an old-growth temperate forest: the relative importance of past disturbances, host trees, and microsite characteristics

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Studies on lianas conducted within temperate forest stands have provided scant information on host trees, microsites, past disturbances, and liana size classes. Studies focussing on East Asia are also lacking, although this information is important for a comprehensive understanding of temperate liana ecology. The aim of this study was to compare the liana community structure of a 6-ha plot in the Ogawa Forest Reserve, an old-growth temperate forest of Japan, with that of other temperate forests. We also examined the relative importance of past disturbances, host trees, and microsite characteristics on specific liana distribution, especially variations among climbing types and liana size classes. The diameter at breast height, species name, and the locations of all liana stems were recorded. The most dominant liana species was Wisteria floribunda, contributing 85 % to the total basal area of the liana community. The liana community structure at the study site was similar to that of other temperate forests in terms of flora at genus level, basal area, and climbing types. Occurrences of stem twiners and root climbers were negatively correlated with tree size gradients, as reported for other temperate forests. Each liana species significantly aggregated at a 25-m scale, on average, whereas there were no exclusive distribution patterns among liana species. Most liana species were dependent on past disturbances, with host tree sizes also influencing liana distribution, and microsite characteristics being less important. Further studies in temperate East Asia will contribute to a comprehensive understanding of liana communities in temperate forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen BP, Pauley EF, Sharitz RR (1997) Hurricane impacts on liana populations in an old-growth southeastern bottomland forest. Torrey Bot Soc 124:34–42. doi:10.2307/2996596

    Article  Google Scholar 

  • Buron J, Lavigne D, Grote K, Tajis R, Sholes O (1998) Association of vines and trees in second-growth forest. Northeast Nat 5:359–362. doi:10.2307/3858566

    Article  Google Scholar 

  • Carrasco-Urra F, Gianoli E (2009) Abundance of climbing plants in a southern temperate rain forest: host tree characteristics or light availability? J Veg Sci 20:1155–1162. doi:10.1111/j.1654-1103.2009.01115.x

    Article  Google Scholar 

  • Castagneri D, Garbarino M, Nola P (2013) Host preference and growth patterns of ivy (Hedera helix L.) in a temperate alluvial forest. Plant Ecol 214:1–9. doi:10.1007/s11258-012-0130-5

    Article  Google Scholar 

  • Collins B, Wein G (1993) Understory vines: distribution and relation to environment on a southern Mixed Hardwood Site. Bull Torrey Bot Club 120:38–44

    Article  Google Scholar 

  • DeWalt SJ, Chave J (2004) Structure and biomass of four lowland neotropical forests. Biotropica 36:7–19. doi:10.1111/j.1744-7429.2004.tb00291.x

    Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Daniel KW, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop) 30:609–628. doi:10.1111/j.2007.0906-7590.05171.x

    Article  Google Scholar 

  • Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt SJ, Ewango CEN, Foster R, Kenfack D, Martínez-Ramos M, Parren M, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Thomas DW (2006) A standard protocol for liana censuses. Biotropica 38:256–261. doi:10.1111/j.1744-7429.2006.00134.x

    Article  Google Scholar 

  • Gianoli E, Saldana A, Jimenez-Castillo M, Valladares F (2010) Distribution and abundance of vines along the light gradient in a southern temperate rain forest. J Veg Sci 21:66–73. doi:10.1111/j.1654-1103.2009.01124.x

    Article  Google Scholar 

  • Gianoli E, Saldaña A, Jiménez-Castillo M (2012) Ecophysiological traits may explain the abundance of climbing plant species across the light gradient in a temperate rainforest. PLoS One 7:e38831. doi:10.1371/journal.pone.0038831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg CH, Smith LM, Levey DJ (2001) Fruit fate, seed germination and growth of an invasive vine—an experimental test of “sit and wait” strategy. Biol Invasions 3:363–372. doi:10.1023/A:1015857721486

    Article  Google Scholar 

  • Guo Y, Li G, Kang B, Wang D, Yang G (2012) The differential responses of lianas and vines to rainfall gradients in distribution and abundance in Qinling Mountains, China. Plant Ecol 213:1749–1755. doi:10.1007/s11258-012-0129-y

    Article  Google Scholar 

  • Hofstede RGM, Dickinson KJM, Mark AF (2002) Distribution, abundance and biomass of epiphyte-lianoid communities in a New Zealand lowland Nothofagus-podocarp temperate rain forest: tropical comparisons. J Biogeogr 28:1033–1049. doi:10.1046/j.1365-2699.2001.00613.x

    Article  Google Scholar 

  • Hu L (2011) Distribution and diversity of climbing plants in temperate East Asia. Biodivers Sci 19:567–573 (In Chinese with English summary)

    Article  Google Scholar 

  • Hu L, Li M, Li Z (2010) Geographical and environmental gradients of lianas and vines in China. Glob Ecol Biogeogr 19:554–561. doi:10.1111/j.1466-8238.2010.00527.x

    Google Scholar 

  • Ichihashi R, Tateno M (2011) Strategies to balance between light acquisition and the risk of falls of four temperate liana species: to overtop host canopies or not? J Ecol 99:1071–1080. doi:10.1111/j.1365-2745.2011.01808.x

    Article  Google Scholar 

  • Ichihashi R, Tateno M (2015) Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees. New Phytol 207:604–612. doi:10.1111/nph.13391

    Article  PubMed  Google Scholar 

  • Jiménez-Castillo M, Lusk CH (2009) Host infestation patterns of the massive liana Hydrangea serratifolia (Hydrangeaceae) in a Chilean temperate rainforest. Austral Ecol 34:829–834. doi:10.1111/j.1442-9993.2009.01990.x

    Article  Google Scholar 

  • Jiménez-Castillo M, Lusk CH (2013) Vascular performance of woody plants in a temperate rain forest: Lianas suffer higher levels of freeze-thaw embolism than associated trees. Funct Ecol 27:403–412. doi:10.1111/1365-2435.12045

    Article  Google Scholar 

  • Kato S, Morito H, Hanaoka S, Komiyama A (2014) Relationship in two root-climbing Schizophragma hydrangeoides and Hydrangea petiolaris (Saxifragaceae) and light environment on the forest floor. Jpn Soc For Environ 56:49–54

    Google Scholar 

  • Kuhman TR, Pearson SM, Turner MG (2010) Effects of land-use history and the contemporary landscape on non-native plant invasion at local and regional scales in the forest-dominated southern Appalachians. Landsc Ecol 25:1433–1445. doi:10.1007/s10980-010-9500-3

    Article  Google Scholar 

  • Kusumoto B, Enoki T, Watanabe Y (2008) Community structure and topographic distribution of lianas in a watershed on Okinawa, South-western Japan. J Trop Ecol 24:675. doi:10.1017/S0266467408005452

    Article  Google Scholar 

  • Kusumoto B, Enoki T, Kubota Y (2013) Determinant factors influencing the spatial distributions of subtropical lianas are correlated with components of functional trait spectra. Ecol Res 28:9–19. doi:10.1007/s11284-012-0993-x

    Article  Google Scholar 

  • Ladwig LM, Meiners SJ (2009) Impacts of temperate lianas on tree growth in young deciduous forests. For Ecol Manage 259:195–200. doi:10.1016/j.foreco.2009.10.012

    Article  Google Scholar 

  • Ladwig LM, Meiners SJ (2010) Liana host preference and implications for deciduous forest regeneration. J Torrey Bot Soc 137:103–112. doi:10.3159/09-RA-041.1

    Article  Google Scholar 

  • Ladwig LM, Meiners SJ (2015) The role of lianas in temperate tree communities. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) Ecology of lianas. Wiley, pp 188–202

  • Lan G, Zhu H, Cao M, Hu Y, Wang H, Deng X, Zhou S, Cui J, Huang J, He Y, Liu L, Xu H, Song J (2009) Spatial dispersion patterns of trees in a tropical rainforest in Xishuangbanna, Southwest China. Ecol Res 24:1117–1124. doi:10.1007/s11284-009-0590-9

    Article  Google Scholar 

  • Laurance WF, Williamson GB (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv Biol 15:1529–1535

    Article  Google Scholar 

  • Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616–628. doi:10.1111/j.1365-2745.2009.01510.x

    Article  Google Scholar 

  • Ledo A, Schnitzer SA (2014) Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 95:2169–2178. doi:10.1890/13-1775.1

    Article  PubMed  Google Scholar 

  • Leicht-Young SA (2014) Seeing the lianas in trees: woody vines of the temperate zone. Arnoldia 72:1–12

    Google Scholar 

  • Leicht-Young SA, Pavlovic NB, Frohnapple KJ, Grundel R (2010) Liana habitat and host preferences in northern temperate forests. For Ecol Manage 260:1467–1477. doi:10.1016/j.foreco.2010.07.045

    Article  Google Scholar 

  • Londré RA, Schnitzer SA (2006) The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecol 87:2973–2978. doi:10.2307/20069325

    Article  Google Scholar 

  • Masaki T, Suzuki W, Niiyama K, Iida S, Tanaka H, Nakashizuka T (1992) Community structure of a species-rich temperate forest, Ogawa Forest Reserve, central Japan. Vegetatio 98:97–111. doi:10.1007/BF00045549

    Article  Google Scholar 

  • Masaki T, Hata S, Ide Y (2015) Heterogeneity in soil water and light environments and dispersal limitation: what facilitates tree species coexistence in a temperate forest? Plant Biol 17:449–458. doi:10.1111/plb.12253

    Article  CAS  PubMed  Google Scholar 

  • McNab WH, Loftis DL (2002) Probability of occurrence and habitat features for oriental bittersweet in an oak forest in the southern Appalachian mountains, USA. For Ecol Manage 155:45–54. doi:10.1016/S0378-1127(01)00546-1

    Article  Google Scholar 

  • Miyashita A, Tateno M (2014) A novel index of leaf RGR predicts tree shade tolerance. Funct Ecol 28:1321–1329. doi:10.1111/1365-2435.12290

    Article  Google Scholar 

  • Mizoguchi Y, Morisawa T, Ohtani Y (2002) Climate in Ogawa Forest Reserve. In: Nakashizuka T, Matsumoto Y (eds) Diversity and Interaction in a Temperate Forest Community: Ogawa Forest Reserve of Japan. Springer Japan, Tokyo, pp 11–18

    Chapter  Google Scholar 

  • Nabe-Nielsen J (2001) Diversity and distribution of lianas in a neotropical rain forest, Yasuní National Park, Ecuador. J Trop Ecol 17:1–19. doi:10.1017/S0266467401001018

    Article  Google Scholar 

  • Nabe-Nielsen J, Hall P (2002) Environmentally induced clonal reproduction and life history traits of the liana Machaerium cuspidatum in an Amazonian rain forest, Ecuador. Plant Ecol 162:215–226

    Article  Google Scholar 

  • Nesheim I, Økland RH (2007) Do vine species in neotropical forests see the forest or the trees? J Veg Sci 18:395–404. doi:10.1658/1100-9233(2007)18[395:DVSINF]2.0.CO;2

    Article  Google Scholar 

  • Paul GS, Yavitt JB (2011) Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants. Bot Rev 77:11–30. doi:10.1007/s12229-010-9059-3

    Article  Google Scholar 

  • Pavlovic NB, Leicht-Young SA (2011) Are temperate mature forests buffered from invasive lianas? J Torrey Bot Soc 138:85–92. doi:10.3159/10-RA-055.1

    Article  Google Scholar 

  • Pélissier R, Goreaud F (2015) ads package for {R}: a fast unbiased implementation of the K-function family for studying spatial point patterns in irregular-shaped sampling windows. J Stat Softw 63:1–18

    Article  Google Scholar 

  • Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. J Ecol 65:1713–1724

    Article  Google Scholar 

  • Putz FE, Holbrook NM (1992) Biomechanical studies of vines. In: Putz FE, Mooney HA (eds) The Biology of Vines. Cambridge University Press, New York, pp 73–97

    Chapter  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing

  • Sakai A, Nomiya H, Suzuki W (2002) Horizontal distribution of stolons of a temperate liana Wisteria floribunda DC. and its ecological significance. J For Res 7:125–130. doi:10.1007/BF02762600

    Article  Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276. doi:10.1086/431250

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230. doi:10.1016/S0169-5347(02)02491-6

    Article  Google Scholar 

  • Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82:913–919

    Article  Google Scholar 

  • Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: Evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666. doi:10.1046/j.1365-2745.2000.00489.x

    Article  Google Scholar 

  • Schnitzer SA, Kuzee ME, Bongers F (2005) Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J Ecol 93:1115–1125. doi:10.1111/j.1365-2745.2005.01056.x

    Article  Google Scholar 

  • Schnitzer SA, Mangan SA, Dalling JW, Baldeck CA, Hubbell SP, Ledo A, Muller-Landau H, Tobin MF, Aguilar S, Brassfield D, Hernandez A, Lao S, Perez R, Valdes O, Yorke SR (2012) Liana abundance, diversity, and distribution on Barro Colorado Island. Panama. PLoS One 7:e52114. doi:10.1371/journal.pone.0052114

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer SA, Mangan SA, Hubbell SP (2015) The lianas of Barro Colorado Island, Panama. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) Ecology of Lianas. John Wiley & Sons, Ltd., pp 76–90

  • Schnitzler A, Heuzé P (2006) Ivy (Hedera helix L.) dynamics in riverine forests: effects of river regulation and forest disturbance. For Ecol Manage 236:12–17. doi:10.1016/j.foreco.2006.05.060

    Article  Google Scholar 

  • Smith LM, Reynolds HL (2012) Positive plant-soil feedback may drive dominance of a woodland invader, Euonymus fortunei. Plant Ecol 213:853–860. doi:10.1007/s11258-012-0047-z

    Article  Google Scholar 

  • Talley SM, Lawton RO, Setzer WN (1996) Host preferences of Rhus Radicans (Anacardiaceae) in a southern deciduous hardwood forest. Ecology 77:1271–1276. doi:10.2307/2265596

    Article  Google Scholar 

  • Tamura T (1981) Multiscale landform classification study in the hills of Japan: Part 2 Application of the multiscale landform classification system to pure geomorphological studies of the hills of Japan. Sci Rep Tohoku Univ Ser 7(31):85–154

    Google Scholar 

  • Tanaka H, Nakashizuka T (1997) Fifteen years of canopy dynamics analyzed by aerial photographs in a temperate deciduous forest, Japan. Ecology 78:612–620. doi:10.1890/0012-9658(1997)078[0612:FYOCDA]2.0.CO;2

    Article  Google Scholar 

  • Toledo-Aceves T, Swaine MD (2008) Above- and below-ground competition between the liana Acacia kamerunensis and tree seedlings in contrasting light environments. Plant Ecol 196:233–244. doi:10.1007/s11258-007-9347-0

    Article  Google Scholar 

  • Trusty JL, Lockaby BG, Zipperer WC, Goertzen LR (2007) Identity of naturalised exotic Wisteria (Fabaceae) in the South-eastern United States. Weed Res 47:479–487. doi:10.1111/j.1365-3180.2007.00587.x

    Article  CAS  Google Scholar 

  • West NM, Gibson DJ, Minchin PR (2010) Microhabitat analysis of the invasive exotic liana Lonicera japonica Thunb. J Torrey Bot Soc 137:380–390. doi:10.3159/09-RA-048.1

    Article  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc 73:3–36

    Article  Google Scholar 

  • Yorke SR, Schnitzer SA, Mascaro J, Letcher SG, Carson WP (2013) Increasing liana abundance and basal area in a tropical forest: the contribution of long-distance clonal colonization. Biotropica 45:317–324. doi:10.1111/btp.12015

    Article  Google Scholar 

  • Yoshinaga S, Takahashi M, Aizawa S (2002) Landforms and soil characteristics in Ogawa Forest Reserve. In: Nakashizuka T, Matsumoto Y (eds) Diversity and interaction in a temperate forest community: Ogawa Forest Reserve of Japan. Springer, Toyko, pp 19–26

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shoji Naoe and Yoshihiro Yamazaki for their helpful advice during the fieldwork. We also thank Marina Komatsu, Takahito Nishihira, Hirohumi Yamazaki, Kana Furuki, Terumi Kikuchi, and Dr. Haruka Ohashi for their assistance with the fieldwork. This study was partly funded by KAKENHI (Grant numbers 25241026 and 15H04517), Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Mori.

Additional information

Communicated by Thomas A. Nagel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, H., Kamijo, T. & Masaki, T. Liana distribution and community structure in an old-growth temperate forest: the relative importance of past disturbances, host trees, and microsite characteristics. Plant Ecol 217, 1171–1182 (2016). https://doi.org/10.1007/s11258-016-0641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0641-6

Keywords

Navigation