Skip to main content

Advertisement

Log in

Germination and establishment of bioenergy grasses outside cultivation: a multi-region seed addition experiment

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Many invasive plants originate as cultivated species. The growing demand for renewable energy has stimulated agricultural production of native and non-native perennial grasses, but little is known about their potential to become invasive outside cultivation, particularly at the early establishment phase. We evaluated effects of propagule pressure and establishment limitations for early establishment of four potential bioenergy grasses in agricultural field margins and forest understory across a 6.3° latitudinal gradient (Ontario, Canada; Illinois and Virginia, USA). We used multiple seed introductions in different years and followed their fate for up to three growing seasons. High interannual variability in establishment indicates that the frequency of propagule introduction is important for invasion outside cultivation. Establishment limitations were stronger in forest than field margins; of 328,800 seeds added, only 1 of 505 persisting seedlings occurred in forest. Removal of competing vegetation had small and variable effects on establishment among sites and species. Unlike previous short-term experiments, our results indicate the potential for the persistence of these bioenergy grasses in both vegetation and seed bank, and highlight the importance of long-term experiments in evaluating invasion risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70. doi:10.1641/B580111

    Article  Google Scholar 

  • Barney JN, Mann JJ, Kyser GB, DiTomaso JM (2012) Assessing habitat susceptibility and resistance to invasion by the bioenergy crops switchgrass and Miscanthus x giganteus in California. Biomass Bioenerg 40:143–154. doi:10.1016/j.biombioe.2012.02.013

    Article  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40. doi:10.1111/j.1472-4642.2008.00521.x

    Article  Google Scholar 

  • Christian D, Yates N, Riche A (2005) Establishing Miscanthus sinensis from seed using conventional sowing methods. Ind Crop Prod 21:109–111. doi:10.1016/j.indcrop.2004.01.004

    Article  Google Scholar 

  • Clark CJ, Poulsen JR, Levey DJ, Osenberg CW (2007) Are plant populations seed limited? A critique and meta-analysis of seed addition experiments. Am Nat 170:128–142. doi:10.1086/518565

    Article  CAS  PubMed  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037. doi:10.1007/s10530-005-3735-y

    Article  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144. doi:10.1086/283241

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi:10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • DiTomaso JM, Barney JN, Mann JJ, Kyser G (2013) For switchgrass cultivated as biofuel in California, invasiveness limited by several steps. Calif Agric 67:96–103. doi:10.3733/ca.v067n02p96

    Article  Google Scholar 

  • Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375. doi:10.1007/s10530-004-8122-6

    Article  Google Scholar 

  • Drake JM, Baggenstos P, Lodge DM (2005) Propagule pressure and persistence in experimental populations. Biol Lett 1:480–483. doi:10.1098/rsbl.2005.0375

    Article  PubMed Central  PubMed  Google Scholar 

  • Flory SL, Lorentz KA, Gordon DR, Sollenberger LE (2012) Experimental approaches for evaluating the invasion risk of biofuel crops. Environ Res Lett 7:045904. doi:10.1088/1748-9326/7/4/045904

    Article  Google Scholar 

  • Germain RM, Johnson L, Schneider S, Cottenie K, Gillis EA, MacDougall AS (2013) Spatial variability in plant predation determines the strength of stochastic community assembly. Am Nat 182:169–179. doi:10.1086/670928

    Article  PubMed  Google Scholar 

  • Gutterson NI, Klingenberg JP, Pereira MA, Engler DE, Jakob K (2014) Odd-ploidy, seed-propagated Miscanthus × giganteus. U.S. Patent 20140033342 A1, Jan 30, 2014

  • Hager HA, Stewart FEC (2013) Suspected selective herbivory of bioenergy grasses by meadow voles (Microtus pennsylvanicus). Can Field Nat 127:44–49

    Google Scholar 

  • Hager HA, Quinn LD, Barney JN, Voigt TB, Newman JA (2015a) Germination and establishment of bioenergy grasses outside cultivation: a multi-region seed addition experiment. 2012 to 2014 [Ontario, Canada and Illinois and Virginia, United States of America]. V1. Agri-Environmental Research Data Repository. http://hdl.handle.net/10864/NHXOM

  • Hager HA, Rupert R, Quinn LD, Newman JA (2015b) Escaped Miscanthus sacchariflorus reduces the richness and diversity of vegetation and soil seed bank. Biol Invasions 17:1833–1847. doi:10.1007/s10530-014-0839-2

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Hedge LH, O’Connor WA, Johnston EL (2012) Manipulating the intrinsic parameters of propagule pressure: implications for bio-invasion. Ecosphere 3:UNSP 48. doi: 10.1890/ES11-000375.1

  • Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 153:464–475. doi:10.1086/303193

    Article  Google Scholar 

  • Jakubowski AR, Jackson RD, Casler MD (2014) The history of reed canarygrass in North America: persistence of natives among invading Eurasian populations. Crop Sci 54:210–219. doi:10.2135/cropsci2013.05.0342

    Article  Google Scholar 

  • Johnstone IM (1986) Plant invasion windows: a time-based classification of invasion potential. Biol Rev 61:369–394

    Article  Google Scholar 

  • Jongejans E, Skarpaas O, Tipping PW, Shea K (2007) Establishment and spread of founding populations of an invasive thistle: the role of competition and seed limitation. Biol Invasions 9:317–325. doi:10.1007/s10530-006-9035-3

    Article  Google Scholar 

  • Keane R, Crawley M (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi:10.1016/S0169-5347(02)02499-0

    Article  Google Scholar 

  • Kempel A, Chrobock T, Fischer M, Rohr RP, van Kleunen M (2013) Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proc Natl Acad Sci USA 110:12727–12732. doi:10.1073/pnas.1300481110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kludze H, Deen B, Weersink A, van Acker R, Janovicek K, De Laporte A (2013) Impact of land classification on potential warm season grass biomass production in Ontario, Canada. Can J Plant Sci 93:249–260. doi:10.4141/CJPS2012-143

    Article  Google Scholar 

  • Leck M (1996) Germination of macrophytes from a Delaware River tidal freshwater wetland. Bull Torrey Bot Club 123:48–67. doi:10.2307/2996306

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi:10.1016/j.tree.2005.02.004

    Article  PubMed  Google Scholar 

  • Mack R, Erneberg M (2002) The United States naturalized flora: largely the product of deliberate introductions. Ann Mo Bot Gard 89:176–189. doi:10.2307/3298562

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.2307/2641039

    Article  Google Scholar 

  • Martin LM, Wilsey BJ (2012) Assembly history alters alpha and beta diversity, exotic-native proportions and functioning of restored prairie plant communities. J Appl Ecol 49:1436–1445. doi:10.1111/j.1365-2664.2012.02202.x

    Article  Google Scholar 

  • Matlaga DP, Schutte BJ, Davis AS (2012) Age-dependent demographic rates of the bioenergy crop Miscanthus × giganteus in Illinois. Invasive Plant Sci Manag 5:238–248. doi:10.1614/IPSM-D-11-00083.1

    Article  Google Scholar 

  • Miller AL, Diez JM, Sullivan JJ, Wangen SR, Wiser SK, Meffin R, Duncan RP (2014) Quantifying invasion resistance: the use of recruitment functions to control for propagule pressure. Ecology 95:920–929. doi:10.1890/13-0655.1

    Article  PubMed  Google Scholar 

  • Minton MS, Mack RN (2010) Naturalization of plant populations: the role of cultivation and population size and density. Oecologia 164:399–409. doi:10.1007/s00442-010-1667-4

    Article  PubMed  Google Scholar 

  • Parker IM (2001) Safe site and seed limitation in Cytisus scoparius (Scotch broom): invasibility, disturbance, and the role of cryptogams in a glacial outwash prairie. Biol Invasions 3:323–332. doi:10.1023/A:1015855515361

    Article  Google Scholar 

  • Pearson DE, Callaway RM, Maron JL (2011) Biotic resistance via granivory: establishment by invasive, naturalized, and native asters reflects generalist preference. Ecology 92:1748–1757

    Article  PubMed  Google Scholar 

  • Pyšek P, Manceur AM, Alba C, McGregor KF, Pergl J, Štajerová K, Chytrý M, Danihelka J, Kartesz J, Klimešová J, Lučanová M, Moravcová L, Nishino M, Sádlo J, Suda J, Tichý L, Kühn I (2015) Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96:762–774. doi:10.1890/14-1005.1

    Article  PubMed  Google Scholar 

  • Quinn LD, Matlaga DP, Stewart JR, Davis AS (2011) Empirical evidence of long-distance dispersal in Miscanthus sinensis and Miscanthus × giganteus. Invasive Plant Sci Manag 4:142–150. doi:10.1614/IPSM-D-10-00067.1

    Article  Google Scholar 

  • Quinn L, Stewart J, Yamada T, Toma Y, Saito M, Shimoda K, Fernández F (2012) Environmental tolerances of Miscanthus sinensis in invasive and native populations. BioEnerg Res 5:139–148. doi:10.1007/s12155-011-9163-1

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x

    Article  Google Scholar 

  • Ross MA, Harper JL (1972) Occupation of biological space during seedling establishment. J Ecol 60:77–88. doi:10.2307/2258041

    Article  Google Scholar 

  • Samson R (2007) Switchgrass production in Ontario: a management guide. Resource Efficient Agricultural Production, Ste-Anne-de-Bellevue

    Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Ann Rev Ecol Evol Syst 40:81–102. doi:10.1146/annurev.ecolsys.110308.120304

    Article  Google Scholar 

  • Smith LL, Barney JN (2014) The relative risk of invasion: evaluation of Miscanthus × giganteus seed establishment. Invasive Plant Sci Manag 7:93–106. doi:10.1614/IPSM-D-13-00051.1

    Article  Google Scholar 

  • Smith WK, Cleveland CC, Reed SC, Miller NL, Runnin SW (2012) Bioenergy potential of the United States constrained by satellite observations of existing productivity. Environ Sci Technol 46:3536–3544. doi:10.1021/es203935d

    Article  CAS  PubMed  Google Scholar 

  • Stroup WW (2013) Generalized linear mixed models: modern concepts, methods and applications. CRC Press, Boca Raton

    Google Scholar 

  • Thomsen MA, D’Antonio CM, Suttle KB, Sousa WP (2006) Ecological resistance, seed density and their interactions determine patterns of invasion in a California coastal grassland. Ecol Lett 9:160–170. doi:10.1111/j.1461-0248.2005.00857.x

    Article  PubMed  Google Scholar 

  • Turnbull LA, Crawley MJ, Rees M (2000) Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88:225–238. doi:10.1034/j.1600-0706.2000.880201.x

    Article  Google Scholar 

  • West NM, Matlaga DP, Davis AS (2014) Quantifying targets to manage invasion risk: light gradients dominate the early regeneration niche of naturalized and pre-commercial Miscanthus populations. Biol Invasions 16:1991–2001. doi:10.1007/s10530-014-0643-z

    Article  Google Scholar 

  • Western University Research Park (2012) Assessment of business case for purpose-grown biomass in Ontario. Western University Research Park, Sarnia

    Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666. doi:10.2307/2265769

    Article  Google Scholar 

  • Yakimowski SB, Hager HA, Eckert CG (2005) Limits and effects of invasion by the nonindigenous wetland plant Lythrum salicaria (purple loosestrife): a seed bank analysis. Biol Invasions 7:687–698. doi:10.1007/s10530-004-5858-y

    Article  Google Scholar 

  • Zhang J, Maun M (1994) Potential for seed bank formation in 7 Great Lakes sand dune species. Am J Bot 81:387–394. doi:10.2307/2445486

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Ontario Ministry of Agriculture, Food and Rural Affairs; the Energy Biosciences Institute; and a Mitacs Elevate fellowship to HAH. Mendel Biotechnology generously provided M. × giganteus Powercane™ seed. We thank K. Bolton, F. Cybula, M. Ho, R. Luttrell, E. Palmer, A. Patchett, K. Shukla, and R. Viejou for assistance in the field; J. Malecki for providing field margin space in Ontario; and L. Smith for providing comparative data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Hager.

Additional information

Communicated by Devan Allen McGranahan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hager, H.A., Quinn, L.D., Barney, J.N. et al. Germination and establishment of bioenergy grasses outside cultivation: a multi-region seed addition experiment. Plant Ecol 216, 1385–1399 (2015). https://doi.org/10.1007/s11258-015-0516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0516-2

Keywords

Navigation